Microgrid protection and control /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Academic Press,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Microgrid Protection and Control
- Copyright Page
- Contents
- Preface
- Acknowledgments
- 1 The concept of microgrid and related terminologies
- 1.1 Introduction
- 1.2 Related concepts
- 1.2.1 Active distribution network
- 1.2.2 Energy internet
- 1.2.3 Virtual power plant
- 1.3 Misconceptions about microgrid
- 1.4 Types of microgrid
- 1.5 Components of microgrids
- 1.5.1 Distributed Generation
- 1.5.2 Energy storage systems
- 1.5.3 Power conversion system
- 1.5.4 Controllers and energy management system
- 1.5.5 Communication system
- 1.5.6 Loads
- 1.5.7 Protection system
- References
- 2 Current industrial practice and research trends in microgrids
- 2.1 Introduction
- 2.2 The current industrial trends in microgrids
- 2.2.1 Microgrid global market trends
- 2.2.2 Microgrid application trends
- 2.2.3 Microgrid business models
- 2.2.4 Technological trends
- 2.2.4.1 Distributed energy resources technologies
- 2.2.4.2 Microgrid control and monitoring technologies
- 2.2.4.3 Microgrid protection technologies
- 2.2.4.4 Instrumentation and communication technologies
- 2.2.4.5 Microgrid planning, modeling, and simulation tools
- 2.3 Current research trends of microgrid
- 2.3.1 Microgrids research issues
- 2.3.2 Selected microgrid R&
- D projects
- 2.3.2.1 Consortium for electric reliability technology solutions
- 2.3.2.2 Microgrids, infrastructure resilience, and advanced controls launchpad
- 2.3.2.3 Renewable energy integration demonstrator singapore
- 2.3.2.4 Other research projects
- 2.3.3 International standards related to microgrids
- References
- 3 Key technical challenges in protection and control of microgrid
- 3.1 Introduction
- 3.2 Challenges in control of microgrids
- 3.2.1 Low system inertia
- 3.2.2 Low reactance to resistance (X/R) ratio.
- 3.2.3 Uncertainty and intermittency of renewable sources
- 3.2.4 Different modes of operation (grid-connected and island modes)
- 3.2.5 Existence and (in some cases) dominance of CBGs
- 3.3 Challenges in protection of microgrids
- 3.3.1 Different short-circuit current in island and grid-connected modes
- 3.3.2 Reduction in reach of impedance relays
- 3.3.3 Bidirectional power flows and voltage profile change
- 3.3.4 Dominant existence of CBGs
- References
- 4 Short-term renewable generation and load forecasting in microgrids
- 4.1 Introduction
- 4.2 Basics and classification of renewable generation forecasting
- 4.3 Basics and classification of load forecasting
- 4.4 Short-term renewable generation and load forecasting techniques
- 4.4.1 Introduction
- a) Physical methods
- b) Time series methods
- 4.4.2 Physical models
- 4.4.2.1 Numerical weather prediction models
- 4.4.2.2 Sky imagerybased forecasts
- 4.4.3 Time series methods
- 4.4.3.1 Artificial neural network
- 4.4.3.2 Adaptive neuro-fuzzy inference system
- 4.4.3.3 Support vector machine
- 4.4.3.4 Deep neural network
- 4.4.3.5 Kernel function extreme learning machine
- 4.5 Accuracy enhancement techniques in generation and load forecasting
- 4.5.1 Forecast accuracy metrics
- 4.5.2 Factors affecting forecasting accuracy
- 4.5.3 Input variable selection methods
- 4.5.4 Data preprocessing
- 4.5.4.1 Fourier transform
- 4.5.4.2 Wavelet transform
- 4.5.4.3 Empirical mode decomposition
- 4.5.4.4 Variational mode decomposition
- 4.5.5 Output processing or ensembling methods
- 4.5.5.1 Simple averaging
- 4.5.5.1.1 Regression
- 4.5.5.1.2 Using an additional model
- 4.6 Application examples
- 4.6.1 Short-term wind forecasting using EMD and hybrid artificial intelligence technique
- 4.6.2 Day-ahead PV forecasting using VMD-GA-ANN.
- 4.6.3 Short-term load forecasting using wavelet transform and LSTM
- References
- 5 Fault and disturbance analysis in microgrid
- 5.1 Introduction
- 5.2 Distinguishing faults from dynamic and transient disturbances
- 5.3 Fault analysis
- 5.4 Advanced algorithms
- 5.4.1 Voltage and current THD-based algorithm
- 5.4.2 Park transformation-based algorithm
- 5.4.2.1 Symmetrical fault detection
- 5.4.2.2 Asymmetrical fault detection
- 5.4.3 Wavelet transform-based algorithm
- 5.4.3.1 Continuous wavelet transform
- 5.4.3.2 Discrete wavelet transform
- 5.4.3.3 Wavelet transform-based fault detection
- 5.4.4 Other applicable algorithms
- References
- 6 Protection of microgrids
- 6.1 Introduction
- 6.2 Requirements of microgrid protection
- 6.3 Differences between protection of traditional power system and microgrids
- 6.4 Design of protection system for microgrids
- 6.4.1 Overcurrent protection
- 6.4.1.1 Coordination of overcurrent protection
- 6.4.2 Differential protection
- 6.4.3 Distance protection
- 6.4.4 Voltage-based protection
- 6.4.5 Adaptive protection
- 6.4.6 Machine learning-based protection schemes
- 6.5 Centralized protection for microgrids
- 6.6 Protection of looped microgrids
- 6.7 Earthing system in protection of microgrids
- References
- 7 Dynamic control of microgrids
- 7.1 Introduction
- 7.2 Dynamic characteristic of microgrids
- 7.3 Modeling of dynamic disturbance system for microgrid
- 7.3.1 Modeling of power control loop
- 7.3.1.1 Modeling of phase angle generation
- 7.3.1.2 Modeling of reactive power control (voltage amplitude generation)
- 7.3.1.3 Modeling of double loop control (voltage and current control loops)
- 7.3.1.4 Modeling of low-pass filter
- 7.3.1.5 Modeling the distribution (microgrid) network
- 7.3.1.6 Modeling the load
- 7.3.1.7 Approximated linear model.
- 8.3.2.3.2 Filter inductance sensitivity analysis with eigenvalues by comparing the VSG and droop control systems
- 8.3.3 Hardware requirements of transient control systems
- 8.4 Identifying different kinds of faults from transient disturbances
- 8.5 Frequency and voltage ride-through
- 8.5.1 Frequency ride-through
- 8.5.2 Voltage ride-through
- 8.6 Application examples: practical experiment and simulation of transient disturbance control system
- 8.6.1 Transient control
- 8.6.1.1 Simulation results for transient control systems
- 8.6.1.2 Field testing results for the transient control device
- References
- 9 Tertiary control of microgrid
- 9.1 Introduction
- 9.2 Optimal energy dispatching control in microgrids
- 9.2.1 Introduction
- 9.2.2 Mathematical modeling
- 9.2.2.1 Linear models
- 9.2.2.2 Nonlinear models
- 9.2.2.3 Multiobjective optimization modeling
- 9.2.2.4 Uncertainties modeling
- 9.2.2.5 Costs modeling
- 9.2.2.6 Constraint functions
- 9.2.3 Optimal energy dispatching algorithms for microgrid
- 9.2.3.1 Jaya algorithm
- 9.2.3.2 Whale optimization algorithm
- 9.2.3.3 Biogeography-based optimization algorithm
- 9.2.3.4 Markov decision process algorithm
- 9.2.3.5 Stackelberg game approach algorithm
- 9.2.3.6 Consensus theory-based algorithms
- 9.2.3.7 Particle swarm optimization algorithm
- 9.2.3.8 Imperialist competitive algorithm
- 9.2.4 Role of soft computing tools in microgrid control
- 9.3 Demand side management and control of microgrids
- 9.3.1 Introduction
- 9.3.2 Demand side management in microgrids
- 9.3.3 Demand response alternatives
- 9.3.3.1 Load management in the demand response
- 9.3.3.2 Price-based demand response
- 9.3.4 Intelligent demand response algorithms
- 9.3.4.1 Decision-making auction algorithm
- 9.3.4.2 Heuristic-based evolutionary algorithm
- 9.3.4.3 Greedy ratio algorithm.