Cargando…

Mathematical modeling of swimming soft microrobots /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Khalil, Islam S. M. (Autor), Klingner, Anke (Autor), Misra, Sarthak (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Mathematical Modeling of Swimming Soft Microrobots
  • Copyright
  • Contents
  • Biography
  • Preface
  • 1 Introduction
  • 1.1 Background
  • 1.2 The concept of swimming soft filament
  • 1.3 Properties of flow at low-Re
  • 1.4 Swimming filament
  • 1.5 Drag-based thrust
  • 1.6 Propulsive thrust from waves
  • 1.7 Modeling framework
  • 1.8 Application areas
  • References
  • Part 1 Fundamentals of the theory of elasticity, electromagnetics, and fluid mechanics
  • 2 Theory of elasticity
  • 2.1 Rigid bodies
  • 2.2 Fluid response
  • 2.3 Geometry of chiral microrobots
  • 2.4 Swimming of rigid bodies
  • 2.5 Deformable bodies
  • 2.6 Reynolds transport theorem
  • 2.7 Equation of motion
  • Equations in rectangular coordinates
  • Elastic filament with uniform cross-section
  • Equations in polar coordinates
  • One-dimensional transverse deformation
  • 2.8 Finite-difference discretization
  • Pivoted boundary condition
  • Tweezed boundary condition
  • Forced boundary condition
  • Torqued boundary condition
  • Large deformation
  • References
  • 3 Theory of electromagnetics
  • 3.1 Force on a moving charge
  • 3.2 Flux and circulation of vector fields
  • Flux of vector field
  • Circulation of vector field
  • 3.3 Maxwell's equations
  • 3.4 Magnetic fields
  • 3.5 The nature of magnetic materials
  • Diamagnetism
  • Paramagnetism
  • Ferromagnetism
  • 3.6 Magnetic force and torque
  • References
  • 4 Fluid mechanics and resistive-force theory
  • 4.1 The equation of continuity
  • 4.2 Euler's equation
  • 4.3 Equation of motion of a viscous fluid
  • 4.4 Reynolds number (revisited)
  • 4.5 Flow with small Reynolds numbers
  • 4.6 The resistive-force theory
  • Drag-based thrust (revisited)
  • Propulsive thrust
  • RFT applied to oscillating bar
  • 4.7 Surface effects
  • 4.8 Materials properties
  • Shear thinning and influence of temperature
  • References
  • Part 2 Internally actuated swimming soft microrobots
  • 5 Principles of propulsion by flagella and cilia
  • 5.1 Modeling framework
  • 5.2 Swimming velocity using Stokeslets theory
  • 5.3 Swimming velocity using RFT (revisited)
  • 5.4 Flagellar kinematics
  • Forces on the cell body
  • Forces on the flagellum
  • 5.5 Modeling of the governing equations
  • Influence of the rheological properties of the background fluid
  • Influence of the actuation frequency
  • 5.6 Fourier analysis of the wave pattern
  • 5.7 Bending moments in an active flagellum
  • Active bending with constant amplitude
  • Active bending with increasing amplitude
  • References
  • 6 Examples
  • 6.1 Calculation of the instantaneous velocities
  • 6.2 Bull spermatozoa swimming
  • 6.3 Spermbot swimming
  • 6.4 Sperm-bead assembly swimming
  • Stable limit cycle
  • References
  • Part 3 Externally actuated swimming soft microrobots
  • 7 Principles of propulsion by magnetically actuated soft bodies
  • 7.1 Small deformation flagellar propulsion
  • 7.2 Near surface effects
  • 7.3 Step-out frequency
  • 7.4 Large deformation (revisited)