Cargando…

Molten salt reactors and integrated molten salt reactors : integrated power conversion /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zohuri, Bahman
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full tiel
  • Copyright
  • Dedication
  • Contents
  • About the Author
  • Preface
  • Acknowledgment
  • Chapter 1
  • Molten Salt Reactor History, From Past to Present
  • 1.1 Introduction
  • 1.2 Aircraft Nuclear Power Reactor Experiment
  • 1.3 Molten Salt Reactor Experiment (MSRE)
  • 1.4 Space-Based Nuclear Reactors
  • 1.5 Sustainable Nuclear Energy
  • 1.6 Prefiltration and Nonprefiltration nuclear reactors
  • 1.7 Nuclear Safeguards
  • 1.8 Safety by Physics Versus by Engineering
  • 1.9 Criticality Issue of Nuclear Energy Systems Driven by MSRs
  • 1.10 Denatured Molten Salt Reactor (DMSR)
  • 1.11 MSR Pros and Cons
  • 1.12 The Potential of the MSR Concept
  • 1.13 Conclusions
  • References
  • Chapter 2
  • Integral Molten Salt Reactor
  • 2.1 Introduction
  • 2.2 Integral Molten Salt Reactor (IMSR) Descriptions
  • 2.3 Integral Molten Salt Reactor (IMSR) Design
  • 2.4 Integral Molten Salt Safety Philosophy
  • 2.5 Proliferation Defense
  • 2.6 Safety and Security (Physical Protection)
  • 2.7 Description of Turbine-Generator Systems
  • 2.8 Electrical and Integrated and Circuit (I & amp
  • C) Systems
  • 2.9 Spent Fuel and Waste Management
  • 2.10 Plant Layout
  • 2.11 Plant Performance
  • 2.12 Development Status of Technologies Relevant to the Nuclear Power Plant
  • 2.13 Development Status and Planned Schedule
  • 2.14 Coupling IMSR Technology with Hybrid Nuclear/Renewable Energy Systems
  • 2.14.1 Thermal Storage and Desalination
  • 2.14.2 H 2 from High Temperature Steam Electrolysis
  • 2.14.3 Synthesized Transport Fuels
  • 2.14.4 Ammonia Production Coupled to IMSR
  • 2.14.5 Coupling IMSR Technology into Direct Reduction Steel with H 2
  • 2.15 Conclusions
  • References
  • Chapter 3
  • New Approach to Energy Conversion Technology
  • 3.1 Introduction
  • 3.2 Waste Heat Recovery
  • 3.3 PCS Components.
  • 3.3.1 Heat Exchangers
  • 3.3.1.1 Recuperative HXs
  • 3.3.1.1.1 Metallic Radiation Recuperator
  • 3.3.1.1.2 Convective Recuperator
  • 3.3.1.1.3 Hybrid Recuperator
  • 3.3.1.1.4 Ceramic Recuperator
  • 3.3.1.2 Regenerative HXs
  • 3.3.1.3 Evaporative HXs
  • 3.3.2 Compact HXs
  • 3.4 Development of Gas Turbine
  • 3.5 Turbomachinery
  • 3.6 Heat Transfer Analysis
  • 3.7 Combined-Cycle Gas Power Plant
  • 3.8 Advanced Computational Materials Proposed for GEN IV Systems
  • 3.9 Material Classes Proposed for GEN IV Systems
  • 3.10 GEN IV Materials Challenges
  • 3.11 GEN IV Materials Fundamental Issues
  • 3.12 Capital Cost of Proposed GEN IV Reactors
  • 3.12.1 Economic and Technical of Combined-Cycle Performance
  • 3.12.2 Economic Evaluation Technique
  • 3.12.3 Output Enhancement
  • 3.12.3.1 Gas Turbine Inlet Air Cooling
  • 3.12.3.2 Power Augmentation
  • 3.13 Combined-Cycle PCS Driven GEN IV Nuclear Plant
  • 3.13.1 Modeling the Brayton Cycle
  • 3.13.2 Modeling the Rankine Cycle
  • 3.13.3 Results
  • References
  • Chapter 4
  • Advanced Power Conversion System Driven by Small Modular Reactors
  • 4.1 Introduction
  • 4.2 Currently Proposed Power Conversion Systems for SMRs
  • 4.3 Advanced Air-Brayton Power Conversion Systems
  • 4.4 Design Equations and Design Parameters
  • 4.4.1 Reactors
  • 4.4.2 Air Compressors and Turbines
  • 4.4.3 Heat Exchanger
  • 4.4.3.1 Primary Heat Exchangers-Sodium-to-Air, Molten Salt-to-Air
  • 4.4.3.2 Economizer-Air to Water
  • 4.4.3.3 Superheaters-Air to Steam
  • 4.4.3.4 Condenser-Steam to Water
  • 4.4.3.5 Recuperator-Air to Air
  • 4.4.3.6 Intercooler-Water to Air
  • 4.4.4 Pumps and Generators
  • 4.4.5 Connections and Uncertainty
  • 4.5 Predicted Performance of Small Modular NACC systems
  • 4.6 Performance Variation of Small Modular NACC Systems.
  • 4.7 Predicted Performance for Small Modular NARC Systems
  • 4.8 Performance Variation of Small Modular NARC Systems
  • 4.9 Predicted Performance for a Small Modular Intercooled NARC System
  • 4.10 Performance Variation of Small Modular Intercooled NARC Systems
  • 4.11 Conclusions
  • References
  • Chapter 5
  • Advanced Nuclear Open Air-Brayton Cycles for Highly Efficient Power Conversion
  • 5.1 Introduction
  • 5.2 Background
  • 5.3 Combined Cycle Feature
  • 5.4 Typical Cycles
  • 5.5 Analysis Methodology
  • 5.6 Validation of Methodology
  • 5.7 Modeling the Nuclear Combined Cycle
  • 5.7.1 Nominal Results for Combined Cycle Model
  • 5.7.2 Extension of Results for Peak Turbine Temperatures
  • 5.8 Modeling the Nuclear Recuperated Cycle
  • 5.8.1 Nominal Results for Recuperated Cycle Models
  • 5.8.2 Nominal Results for Recuperated Cycle
  • 5.9 Economic Impact
  • 5.10 Conclusions
  • References
  • Chapter 6
  • Heat pipe driven heat exchangers to avoid salt freezing and control tritium
  • 6.1 Introduction
  • 6.2 Heat transfer-the traditional application for heat pipes
  • 6.3 Prevention of coolant salt freezing
  • 6.4 Tritium capture
  • 6.5 Reactor systems and heat pipes design requirements
  • 6.5.1 Fluoride-salt-cooled high-temperature reactor
  • 6.5.2 Salt-cooled fusion systems
  • 6.5.3 Molten salt reactors
  • 6.6 Salt reactor heat exchanger requirements
  • 6.7 Heat pipe design and startup temperature
  • 6.7.1 Choice of fluid
  • 6.8 Heat transfer analysis
  • 6.8.1 Heat pipe operation limits
  • 6.8.1.1 Viscous limit
  • 6.8.1.2 Entrainment limit
  • 6.8.1.3 Boiling limit
  • 6.8.1.4 Sonic limit
  • 6.8.1.5 Wicking or capillary limit
  • 6.8.2 Sodium heat pipe experience
  • 6.9 Tritium control
  • 6.10 Status of technology and path forward
  • References.
  • Chapter 7
  • Salt cleanup and waste solidification for fission and fusion reactors
  • 7.1 Introduction
  • 7.2 Requirements
  • 7.2.1 Reactor salt requirements
  • 7.2.2 Molten salt separations requirements
  • 7.2.3 Final waste form requirements
  • 7.3 Separations
  • 7.3.1 Distillation
  • 7.3.2 Electrochemical separations
  • 7.4 Conversion of salt wastes to high-quality waste forms
  • 7.4.1 Conversion of halide wastes to iron phosphate gas
  • 7.4.2 Conversion of halide wastes to borosilicate glass
  • 7.5 Other considerations
  • 7.6 Conclusions
  • References
  • Appendix A
  • A combined cycle power conversion system for small modular LMFBR
  • References
  • APPENDIX B
  • Direct reactor auxiliary cooling system (DRACS)
  • References
  • Appendix C
  • Heat pipe general knowledge
  • Appendix D
  • Variable electricity and steam-cooled based load reactors
  • References
  • Appendix E
  • Variable electricity and steam-cooled based load reactors
  • References
  • Index
  • Back cover.