|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1258658073 |
003 |
OCoLC |
005 |
20231120010550.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210702s2021 enk o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCO
|d EBLCP
|d OCLCF
|d N$T
|d SOE
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780323918466
|q (electronic bk.)
|
020 |
|
|
|a 0323918468
|q (electronic bk.)
|
020 |
|
|
|z 0323906389
|
020 |
|
|
|z 9780323906388
|
035 |
|
|
|a (OCoLC)1258658073
|
050 |
|
4 |
|a TK9203.M65
|
082 |
0 |
4 |
|a 621.483
|2 23
|
100 |
1 |
|
|a Zohuri, Bahman.
|
245 |
1 |
0 |
|a Molten salt reactors and integrated molten salt reactors :
|b integrated power conversion /
|c Bahman Zohuri.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Front cover -- Half title -- Full tiel -- Copyright -- Dedication -- Contents -- About the Author -- Preface -- Acknowledgment -- Chapter 1 -- Molten Salt Reactor History, From Past to Present -- 1.1 Introduction -- 1.2 Aircraft Nuclear Power Reactor Experiment -- 1.3 Molten Salt Reactor Experiment (MSRE) -- 1.4 Space-Based Nuclear Reactors -- 1.5 Sustainable Nuclear Energy -- 1.6 Prefiltration and Nonprefiltration nuclear reactors -- 1.7 Nuclear Safeguards -- 1.8 Safety by Physics Versus by Engineering -- 1.9 Criticality Issue of Nuclear Energy Systems Driven by MSRs -- 1.10 Denatured Molten Salt Reactor (DMSR) -- 1.11 MSR Pros and Cons -- 1.12 The Potential of the MSR Concept -- 1.13 Conclusions -- References -- Chapter 2 -- Integral Molten Salt Reactor -- 2.1 Introduction -- 2.2 Integral Molten Salt Reactor (IMSR) Descriptions -- 2.3 Integral Molten Salt Reactor (IMSR) Design -- 2.4 Integral Molten Salt Safety Philosophy -- 2.5 Proliferation Defense -- 2.6 Safety and Security (Physical Protection) -- 2.7 Description of Turbine-Generator Systems -- 2.8 Electrical and Integrated and Circuit (I & amp -- C) Systems -- 2.9 Spent Fuel and Waste Management -- 2.10 Plant Layout -- 2.11 Plant Performance -- 2.12 Development Status of Technologies Relevant to the Nuclear Power Plant -- 2.13 Development Status and Planned Schedule -- 2.14 Coupling IMSR Technology with Hybrid Nuclear/Renewable Energy Systems -- 2.14.1 Thermal Storage and Desalination -- 2.14.2 H 2 from High Temperature Steam Electrolysis -- 2.14.3 Synthesized Transport Fuels -- 2.14.4 Ammonia Production Coupled to IMSR -- 2.14.5 Coupling IMSR Technology into Direct Reduction Steel with H 2 -- 2.15 Conclusions -- References -- Chapter 3 -- New Approach to Energy Conversion Technology -- 3.1 Introduction -- 3.2 Waste Heat Recovery -- 3.3 PCS Components.
|
505 |
8 |
|
|a 3.3.1 Heat Exchangers -- 3.3.1.1 Recuperative HXs -- 3.3.1.1.1 Metallic Radiation Recuperator -- 3.3.1.1.2 Convective Recuperator -- 3.3.1.1.3 Hybrid Recuperator -- 3.3.1.1.4 Ceramic Recuperator -- 3.3.1.2 Regenerative HXs -- 3.3.1.3 Evaporative HXs -- 3.3.2 Compact HXs -- 3.4 Development of Gas Turbine -- 3.5 Turbomachinery -- 3.6 Heat Transfer Analysis -- 3.7 Combined-Cycle Gas Power Plant -- 3.8 Advanced Computational Materials Proposed for GEN IV Systems -- 3.9 Material Classes Proposed for GEN IV Systems -- 3.10 GEN IV Materials Challenges -- 3.11 GEN IV Materials Fundamental Issues -- 3.12 Capital Cost of Proposed GEN IV Reactors -- 3.12.1 Economic and Technical of Combined-Cycle Performance -- 3.12.2 Economic Evaluation Technique -- 3.12.3 Output Enhancement -- 3.12.3.1 Gas Turbine Inlet Air Cooling -- 3.12.3.2 Power Augmentation -- 3.13 Combined-Cycle PCS Driven GEN IV Nuclear Plant -- 3.13.1 Modeling the Brayton Cycle -- 3.13.2 Modeling the Rankine Cycle -- 3.13.3 Results -- References -- Chapter 4 -- Advanced Power Conversion System Driven by Small Modular Reactors -- 4.1 Introduction -- 4.2 Currently Proposed Power Conversion Systems for SMRs -- 4.3 Advanced Air-Brayton Power Conversion Systems -- 4.4 Design Equations and Design Parameters -- 4.4.1 Reactors -- 4.4.2 Air Compressors and Turbines -- 4.4.3 Heat Exchanger -- 4.4.3.1 Primary Heat Exchangers-Sodium-to-Air, Molten Salt-to-Air -- 4.4.3.2 Economizer-Air to Water -- 4.4.3.3 Superheaters-Air to Steam -- 4.4.3.4 Condenser-Steam to Water -- 4.4.3.5 Recuperator-Air to Air -- 4.4.3.6 Intercooler-Water to Air -- 4.4.4 Pumps and Generators -- 4.4.5 Connections and Uncertainty -- 4.5 Predicted Performance of Small Modular NACC systems -- 4.6 Performance Variation of Small Modular NACC Systems.
|
505 |
8 |
|
|a 4.7 Predicted Performance for Small Modular NARC Systems -- 4.8 Performance Variation of Small Modular NARC Systems -- 4.9 Predicted Performance for a Small Modular Intercooled NARC System -- 4.10 Performance Variation of Small Modular Intercooled NARC Systems -- 4.11 Conclusions -- References -- Chapter 5 -- Advanced Nuclear Open Air-Brayton Cycles for Highly Efficient Power Conversion -- 5.1 Introduction -- 5.2 Background -- 5.3 Combined Cycle Feature -- 5.4 Typical Cycles -- 5.5 Analysis Methodology -- 5.6 Validation of Methodology -- 5.7 Modeling the Nuclear Combined Cycle -- 5.7.1 Nominal Results for Combined Cycle Model -- 5.7.2 Extension of Results for Peak Turbine Temperatures -- 5.8 Modeling the Nuclear Recuperated Cycle -- 5.8.1 Nominal Results for Recuperated Cycle Models -- 5.8.2 Nominal Results for Recuperated Cycle -- 5.9 Economic Impact -- 5.10 Conclusions -- References -- Chapter 6 -- Heat pipe driven heat exchangers to avoid salt freezing and control tritium -- 6.1 Introduction -- 6.2 Heat transfer-the traditional application for heat pipes -- 6.3 Prevention of coolant salt freezing -- 6.4 Tritium capture -- 6.5 Reactor systems and heat pipes design requirements -- 6.5.1 Fluoride-salt-cooled high-temperature reactor -- 6.5.2 Salt-cooled fusion systems -- 6.5.3 Molten salt reactors -- 6.6 Salt reactor heat exchanger requirements -- 6.7 Heat pipe design and startup temperature -- 6.7.1 Choice of fluid -- 6.8 Heat transfer analysis -- 6.8.1 Heat pipe operation limits -- 6.8.1.1 Viscous limit -- 6.8.1.2 Entrainment limit -- 6.8.1.3 Boiling limit -- 6.8.1.4 Sonic limit -- 6.8.1.5 Wicking or capillary limit -- 6.8.2 Sodium heat pipe experience -- 6.9 Tritium control -- 6.10 Status of technology and path forward -- References.
|
505 |
8 |
|
|a Chapter 7 -- Salt cleanup and waste solidification for fission and fusion reactors -- 7.1 Introduction -- 7.2 Requirements -- 7.2.1 Reactor salt requirements -- 7.2.2 Molten salt separations requirements -- 7.2.3 Final waste form requirements -- 7.3 Separations -- 7.3.1 Distillation -- 7.3.2 Electrochemical separations -- 7.4 Conversion of salt wastes to high-quality waste forms -- 7.4.1 Conversion of halide wastes to iron phosphate gas -- 7.4.2 Conversion of halide wastes to borosilicate glass -- 7.5 Other considerations -- 7.6 Conclusions -- References -- Appendix A -- A combined cycle power conversion system for small modular LMFBR -- References -- APPENDIX B -- Direct reactor auxiliary cooling system (DRACS) -- References -- Appendix C -- Heat pipe general knowledge -- Appendix D -- Variable electricity and steam-cooled based load reactors -- References -- Appendix E -- Variable electricity and steam-cooled based load reactors -- References -- Index -- Back cover.
|
650 |
|
0 |
|a Molten salt reactors.
|
650 |
|
0 |
|a Energy conversion.
|
650 |
|
6 |
|a R�eacteurs �a sels fondus.
|0 (CaQQLa)000291235
|
650 |
|
6 |
|a �Energie
|x Conversion.
|0 (CaQQLa)201-0385643
|
650 |
|
7 |
|a Energy conversion
|2 fast
|0 (OCoLC)fst00910026
|
650 |
|
7 |
|a Molten salt reactors
|2 fast
|0 (OCoLC)fst01024962
|
776 |
0 |
8 |
|i Print version:
|z 9780323918466
|
776 |
0 |
8 |
|i Print version:
|z 0323906389
|z 9780323906388
|w (OCoLC)1231958767
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323906388
|z Texto completo
|