Cargando…

Artificial intelligence for future generation robotics /

Artificial Intelligence for Future Generation Robotics offers a vision for potential future robotics applications for AI technologies. Each chapter includes theory and mathematics to stimulate novel research directions based on the state-of-the-art in AI and smart robotics. Organized by application...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Shaw, Rabindra Nath, Ghosh, Ankush, Balas, Valentina Emilia, Bianchini, Monica
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1257665859
003 OCoLC
005 20231120010549.0
006 m o d
007 cr un|---aucuu
008 210626s2021 cau o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OPELS  |d OCLCO  |d OCLCF  |d N$T  |d OCLCO  |d OCLCQ  |d ORMDA  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1257480635  |a 1287879714 
020 |a 032385799X 
020 |a 9780323857994  |q (electronic bk.) 
020 |z 9780323854986 
020 |z 0323854982 
035 |a (OCoLC)1257665859  |z (OCoLC)1257480635  |z (OCoLC)1287879714 
050 4 |a TJ211 
082 0 4 |a 629.89263  |2 23 
245 0 0 |a Artificial intelligence for future generation robotics /  |c edited by Rabindra Nath Shaw [and more]. 
260 |a San Diego :  |b Elsevier,  |c 2021. 
300 |a 1 online resource (180 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover -- Artificial Intelligence for Future Generation Robotics -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1. Robotic process automation with increasing productivity and improving product quality using artificial intelligence and ... -- 1.1 Introduction -- 1.2 Related work -- 1.3 Proposed work -- 1.4 Proposed model -- 1.4.1 System component -- 1.4.2 Effective collaboration -- 1.5 Manufacturing systems -- 1.6 Results analysis -- 1.7 Conclusions and future work -- References 
505 8 |a 2. Inverse kinematics analysis of 7-degree of freedom welding and drilling robot using artificial intelligence techniques -- 2.1 Introduction -- 2.2 Literature review -- 2.3 Modeling and design -- 2.3.1 Fitness function -- 2.3.2 Particle swarm optimization -- 2.3.3 Firefly algorithm -- 2.3.4 Proposed algorithm -- 2.4 Results and discussions -- 2.5 Conclusions and future work -- References -- 3. Vibration-based diagnosis of defect embedded in inner raceway of ball bearing using 1D convolutional neural network -- 3.1 Introduction -- 3.2 2D CNN-a brief introduction 
505 8 |a 3.3 1D convolutional neural network -- 3.4 Statistical parameters for feature extraction -- 3.5 Dataset used -- 3.6 Results -- 3.7 Conclusion -- References -- 4. Single shot detection for detecting real-time flying objects for unmanned aerial vehicle -- 4.1 Introduction -- 4.2 Related work -- 4.2.1 Appearance-based methods -- 4.2.2 Motion-based methods -- 4.2.3 Hybrid methods -- 4.2.4 Single-step detectors -- 4.2.5 Two-step detectors/region-based detectors -- 4.3 Methodology -- 4.3.1 Model training -- 4.3.2 Evaluation metric -- 4.4 Results and discussions 
505 8 |a 4.4.1 For real-time flying objects from video -- 4.5 Conclusion -- References -- 5. Depression detection for elderly people using AI robotic systems leveraging the Nelder-Mead Method -- 5.1 Introduction -- 5.2 Background -- 5.3 Related work -- 5.4 Elderly people detect depression signs and symptoms -- 5.4.1 Causes of depression in older adults -- 5.4.2 Medical conditions that can cause elderly depression -- 5.4.3 Elderly depression as side effect of medication -- 5.4.4 Self-help for elderly depression -- 5.5 Proposed methodology -- 5.5.1 Proposed algorithm 
505 8 |a 5.5.2 Persistent monitoring for depression detection -- 5.5.3 Emergency monitoring -- 5.5.4 Personalized monitoring -- 5.5.5 Feature extraction -- 5.6 Result analysis -- References -- 6. Data heterogeneity mitigation in healthcare robotic systems leveraging the Nelder-Mead method -- 6.1 Introduction -- 6.1.1 Related work -- 6.1.2 Contributions -- 6.2 Data heterogeneity mitigation -- 6.2.1 Data preprocessing -- 6.2.2 Nelder-Mead method for mitigating data heterogeneity -- 6.3 LSTM-based classification of data -- 6.4 Experiments and results 
500 |a 6.4.1 Data heterogeneity mitigation using Nelder-Mead method. 
520 |a Artificial Intelligence for Future Generation Robotics offers a vision for potential future robotics applications for AI technologies. Each chapter includes theory and mathematics to stimulate novel research directions based on the state-of-the-art in AI and smart robotics. Organized by application into ten chapters, this book offers a practical tool for researchers and engineers looking for new avenues and use-cases that combine AI with smart robotics. As we witness exponential growth in automation and the rapid advancement of underpinning technologies, such as ubiquitous computing, sensing, intelligent data processing, mobile computing and context aware applications, this book is an ideal resource for future innovation. Brings AI and smart robotics into imaginative, technically-informed dialogue Integrates fundamentals with real-world applications Presents potential applications for AI in smart robotics by use-case Gives detailed theory and mathematical calculations for each application Stimulates new thinking and research in applying AI to robotics. 
650 0 |a Robotics. 
650 0 |a Artificial intelligence. 
650 2 |a Robotics  |0 (DNLM)D012371 
650 2 |a Artificial Intelligence  |0 (DNLM)D001185 
650 6 |a Robotique.  |0 (CaQQLa)201-0110752 
650 6 |a Intelligence artificielle.  |0 (CaQQLa)201-0008626 
650 7 |a artificial intelligence.  |2 aat  |0 (CStmoGRI)aat300251574 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Robotics  |2 fast  |0 (OCoLC)fst01098997 
700 1 |a Shaw, Rabindra Nath. 
700 1 |a Ghosh, Ankush. 
700 1 |a Balas, Valentina Emilia. 
700 1 |a Bianchini, Monica. 
776 0 8 |i Print version:  |a Shaw, Rabindra Nath.  |t Artificial Intelligence for Future Generation Robotics.  |d San Diego : Elsevier, �2021  |z 9780323854986 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323854986  |z Texto completo