Cargando…

Progress in medicinal chemistry. Volume 60 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Cox, Brian (Chemist) (Editor ), Witty, D. R. (David R.) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2021.
Colección:Progress in medicinal chemistry ; volume 60
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1257553638
003 OCoLC
005 20231120010549.0
006 m o d
007 cr cnu---unuuu
008 210625s2021 ne o 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCO  |d OCLCF  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9780323850568  |q (print) 
035 |a (OCoLC)1257553638 
050 4 |a RS403 
082 0 4 |a 615.1/9  |2 23 
245 0 0 |a Progress in medicinal chemistry.  |n Volume 60 /  |c edited by David R. Witty, Brian Cox. 
264 1 |a Amsterdam, Netherlands :  |b Elsevier,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Progress in medicinal chemistry ;  |v volume 60 
588 0 |a Online resource; title from PDF title page (ScienceDirect, viewed June 25, 2021). 
505 0 |a Intro -- Progress in Medicinal Chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter Two: PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of cataly ... -- 1. PROTACs: Heterobifunctional molecules hijacking the UPS -- 1.1. Historical timeline and milestones of PROTACs -- 1.2. Advantages of PROTACs over small molecule drugs -- 1.3. Key parameters to evaluate PROTAC activity -- 1.4. General considerations for PROTAC design -- 1.5. PROTACs and `molecular glues: Two sub-modalities for targeted degradation emerge -- 2. From concept to practice: Challenges and opportunities in PROTAC development -- 2.1. Considerations and methodologies for POI and E3 ligase selection -- 2.1.1. Genetic fusion technologies -- 2.1.2. Macromolecular strategies -- 2.1.3. Protein modification strategies to expand the E3 ligase toolbox -- 2.2. Optimisation of PROTAC properties and the importance of linkerology -- 2.2.1. Assays to evaluate physicochemical properties of PROTACs in vitro -- 2.2.2. PROTAC linkerology -- 2.3. Assessment of targeted protein degradation in cells -- 2.3.1. Immunoassays -- 2.3.2. Reporter assays -- 2.3.2.1. Fluorescence-based reporter assays -- 2.3.2.2. Luminescence-based reporter assays -- 2.3.3. Mass spectrometry -- 2.3.4. Ubiquitin-proteasome system dependency assays -- 2.4. Quantification of key intracellular events for targeted protein degradation -- 2.4.1. Ternary complex formation -- 2.4.2. Target ubiquitination -- 2.5. PROTAC development workflow -- 3. Scope of targeted protein degradation -- 3.1. Proteins degraded: An overview -- 3.2. Oncology targets at the forefront of TPD -- 3.3. The search for novel E3 ligase ligands: Opportunities in TPD -- 3.3.1. Chemoproteomics as a tool for the identification of E3 ligase ligands -- 3.3.2. Rational identification of molecular glues. 
505 8 |a 3.4. Degrading `challenging targets -- 3.4.1. Signal transducer and activator of transcription 3 -- 3.4.2. Tau -- 4. Current progress in PROTAC translational research -- 4.1. Transitioning PROTACs from the bench to the clinic -- 4.1.1. The hurdles of pharmacokinetic optimisation -- 4.1.2. PROTACs degrade target proteins in vivo -- 4.2. PROTACs in clinical trials: The race for the first approval -- 5. Emerging approaches in targeted protein degradation -- 5.1. Targeted delivery and conditional activation of PROTACs -- 5.1.1. Tissue-selective protein degradation: Antibody-PROTAC conjugates -- 5.1.2. Spatiotemporal control of protein degradation: Conditional activation of PROTACs with light -- 5.2. Alternative approaches for targeted protein degradation -- 5.2.1. Proteasomal degradation: BioPROTACs -- 5.2.2. Lysosomal degradation: LYTACs, AUTACs and ATTECs -- 5.2.2.1. LYTACs: Protein degradation through the endosome/lysosome pathway -- 5.2.2.2. AUTACs and ATTEC: Protein degradation through the autophagy pathway -- 5.3. From chimeric degraders to heterobifunctionals: Expanding the proximity-induction paradigm -- 5.3.1. RIBOTACs -- 5.3.2. Heterobifunctional molecules: Expanding the post-translational modifiers toolbox -- 6. Summary -- Appendix -- A. List of abbreviations -- B. List of protein ID -- References -- Chapter Three: Automated and enabling technologies for medicinal chemistry -- 1. Introduction -- 2. History of automation in medicinal chemistry -- 2.1. Early synthesis technologies -- 2.2. Development of automated purification techniques -- 2.3. From manual to automated analysis -- 3. The current state of automation and established technologies in medicinal chemistry -- 3.1. Analyse and design-Software tools -- 3.2. Make-Reaction planning tools -- 3.3. Make-Synthesis tools -- 3.4. Make-Work-up tools -- 3.5. Make-Automated purification systems. 
505 8 |a 3.6. Make-Automated analysis techniques -- 4. Automation gaps and emerging technologies -- 4.1. Artificial intelligence and machine learning -- 4.2. Fully automated integrated synthesis platforms -- 4.3. Closed-loop drug discovery -- 4.4. Gaps and outlook for automated technologies in medicinal chemistry -- 5. Medicinal chemists vs machines: What the future holds -- References -- Chapter Four: Use of molecular docking computational tools in drug discovery -- 1. Introduction -- 2. Molecular docking -- 2.1. Theory of docking -- 2.2. Searching algorithm -- 2.2.1. Systematic methods -- 2.2.2. Stochastic methods -- 2.2.3. Scoring functions -- 2.2.3.1. Tailored scoring functions -- 2.3. Practical aspects in molecular docking -- 2.3.1. Protein preparation -- 2.3.1.1. Protonation state -- 2.3.1.2. Binding site definition and cavity detection -- 2.3.1.3. Protein flexibility -- 2.3.1.3.1. Soft docking and side chain rotamer libraries -- 2.3.1.3.2. Ensemble docking -- 2.3.1.4. Structural water molecules -- 2.3.1.4.1. How to recognise active water? -- 2.3.2. Ligand preparation -- 2.4. Small molecule databases -- 2.4.1. ZINC database -- 2.4.2. ENAMINE database -- 2.4.3. NCI open database -- 2.4.4. ChEMBL -- 2.4.5. DrugBank -- 2.4.6. ASINEX database -- 2.4.7. Cambridge structural database (CSD) -- 2.4.8. PubChem -- 3. Fragment-based screening -- 4. Protein-protein docking -- 5. Protein-peptide docking -- 6. Nucleic acid docking -- 7. Current challenges -- 7.1. Blind docking -- 7.2. Covalent docking -- 7.3. Reverse docking -- 8. Looking forward -- References -- Chapter Five: An industrial perspective on co-crystals: Screening, identification and development of the less utilised so ... -- 1. Introduction -- 2. What are co-crystals? -- 2.1. History and discovery -- 2.1.1. Crystal engineering -- 2.1.2. Cinnamic acid example -- 2.2. The salt co-crystal continuum. 
505 8 |a 3. Intellectual property and regulatory perspective on co-crystals -- 4. Generation, characterisation, and development of co-crystals -- 4.1. Designing screens and synthons -- 4.1.1. Supramolecular synthons -- 4.2. Screening by grinding -- 4.2.1. Synthesis of pharmaceutical co-crystals -- 4.2.2. Mechanochemical co-crystal screening -- 4.2.3. Liquid-assisted grinding (LAG) -- 4.2.4. In situ monitoring -- 4.3. Screening by solution methods -- 4.3.1. Evaporative crystallisation -- 4.3.2. Cooling crystallisation -- 4.3.3. Anti-solvent crystallisation -- 4.3.4. Solution-mediated phase transformation (slurry conversion) methods -- 4.4. Characterisation of co-crystals -- 4.4.1. Single crystal X-ray diffraction (SCXRD) -- 4.4.2. Powder X-ray diffraction (XRPD) -- 4.4.3. Solid-state NMR -- 4.4.4. Infrared and Raman spectroscopy -- 4.5. Importance of phase diagrams -- 4.5.1. Binary phase diagrams -- 4.5.2. Ternary phase diagrams -- 4.6. Scaling up of co-crystals -- 4.6.1. Mechanochemistry -- 4.6.2. Twin screw extrusion (TSE) -- 4.6.3. Resonant acoustic mixing (RAM) -- 4.6.4. High shear granulation (HSG) -- 4.6.5. Solution based scale up -- 4.6.6. Solubility -- 4.6.7. Nucleation and seeding -- 4.6.8. Crystal growth -- 4.6.9. Process analytical technologies -- 4.6.10. Case studies -- 4.7. Formulating co-crystals -- 5. Application of co-crystals -- 5.1. Processability -- 5.2. Solubility -- 5.3. Bioavailability -- 5.4. Improving formulation -- 5.5. Permeability -- 5.6. Drug-drug co-crystals -- 5.6.1. Dual action -- 5.6.2. Non-commercial drug-drug co-crystals -- 5.7. Purification and chiral resolution -- 5.7.1. Diastereomeric co-crystals -- 5.7.2. Preferential crystallisation of co-crystals -- 6. Summary and looking forward -- References. 
650 0 |a Pharmaceutical chemistry. 
650 2 |a Chemistry, Pharmaceutical  |0 (DNLM)D002626 
650 6 |a Chimie pharmaceutique.  |0 (CaQQLa)201-0028674 
650 7 |a Pharmaceutical chemistry  |2 fast  |0 (OCoLC)fst01060115 
700 1 |a Cox, Brian  |c (Chemist),  |e editor. 
700 1 |a Witty, D. R.  |q (David R.),  |e editor. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00796468/60  |z Texto completo