|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1257553638 |
003 |
OCoLC |
005 |
20231120010549.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
210625s2021 ne o 000 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCO
|d OCLCF
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|z 9780323850568
|q (print)
|
035 |
|
|
|a (OCoLC)1257553638
|
050 |
|
4 |
|a RS403
|
082 |
0 |
4 |
|a 615.1/9
|2 23
|
245 |
0 |
0 |
|a Progress in medicinal chemistry.
|n Volume 60 /
|c edited by David R. Witty, Brian Cox.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b Elsevier,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Progress in medicinal chemistry ;
|v volume 60
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed June 25, 2021).
|
505 |
0 |
|
|a Intro -- Progress in Medicinal Chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter Two: PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of cataly ... -- 1. PROTACs: Heterobifunctional molecules hijacking the UPS -- 1.1. Historical timeline and milestones of PROTACs -- 1.2. Advantages of PROTACs over small molecule drugs -- 1.3. Key parameters to evaluate PROTAC activity -- 1.4. General considerations for PROTAC design -- 1.5. PROTACs and `molecular glues: Two sub-modalities for targeted degradation emerge -- 2. From concept to practice: Challenges and opportunities in PROTAC development -- 2.1. Considerations and methodologies for POI and E3 ligase selection -- 2.1.1. Genetic fusion technologies -- 2.1.2. Macromolecular strategies -- 2.1.3. Protein modification strategies to expand the E3 ligase toolbox -- 2.2. Optimisation of PROTAC properties and the importance of linkerology -- 2.2.1. Assays to evaluate physicochemical properties of PROTACs in vitro -- 2.2.2. PROTAC linkerology -- 2.3. Assessment of targeted protein degradation in cells -- 2.3.1. Immunoassays -- 2.3.2. Reporter assays -- 2.3.2.1. Fluorescence-based reporter assays -- 2.3.2.2. Luminescence-based reporter assays -- 2.3.3. Mass spectrometry -- 2.3.4. Ubiquitin-proteasome system dependency assays -- 2.4. Quantification of key intracellular events for targeted protein degradation -- 2.4.1. Ternary complex formation -- 2.4.2. Target ubiquitination -- 2.5. PROTAC development workflow -- 3. Scope of targeted protein degradation -- 3.1. Proteins degraded: An overview -- 3.2. Oncology targets at the forefront of TPD -- 3.3. The search for novel E3 ligase ligands: Opportunities in TPD -- 3.3.1. Chemoproteomics as a tool for the identification of E3 ligase ligands -- 3.3.2. Rational identification of molecular glues.
|
505 |
8 |
|
|a 3.4. Degrading `challenging targets -- 3.4.1. Signal transducer and activator of transcription 3 -- 3.4.2. Tau -- 4. Current progress in PROTAC translational research -- 4.1. Transitioning PROTACs from the bench to the clinic -- 4.1.1. The hurdles of pharmacokinetic optimisation -- 4.1.2. PROTACs degrade target proteins in vivo -- 4.2. PROTACs in clinical trials: The race for the first approval -- 5. Emerging approaches in targeted protein degradation -- 5.1. Targeted delivery and conditional activation of PROTACs -- 5.1.1. Tissue-selective protein degradation: Antibody-PROTAC conjugates -- 5.1.2. Spatiotemporal control of protein degradation: Conditional activation of PROTACs with light -- 5.2. Alternative approaches for targeted protein degradation -- 5.2.1. Proteasomal degradation: BioPROTACs -- 5.2.2. Lysosomal degradation: LYTACs, AUTACs and ATTECs -- 5.2.2.1. LYTACs: Protein degradation through the endosome/lysosome pathway -- 5.2.2.2. AUTACs and ATTEC: Protein degradation through the autophagy pathway -- 5.3. From chimeric degraders to heterobifunctionals: Expanding the proximity-induction paradigm -- 5.3.1. RIBOTACs -- 5.3.2. Heterobifunctional molecules: Expanding the post-translational modifiers toolbox -- 6. Summary -- Appendix -- A. List of abbreviations -- B. List of protein ID -- References -- Chapter Three: Automated and enabling technologies for medicinal chemistry -- 1. Introduction -- 2. History of automation in medicinal chemistry -- 2.1. Early synthesis technologies -- 2.2. Development of automated purification techniques -- 2.3. From manual to automated analysis -- 3. The current state of automation and established technologies in medicinal chemistry -- 3.1. Analyse and design-Software tools -- 3.2. Make-Reaction planning tools -- 3.3. Make-Synthesis tools -- 3.4. Make-Work-up tools -- 3.5. Make-Automated purification systems.
|
505 |
8 |
|
|a 3.6. Make-Automated analysis techniques -- 4. Automation gaps and emerging technologies -- 4.1. Artificial intelligence and machine learning -- 4.2. Fully automated integrated synthesis platforms -- 4.3. Closed-loop drug discovery -- 4.4. Gaps and outlook for automated technologies in medicinal chemistry -- 5. Medicinal chemists vs machines: What the future holds -- References -- Chapter Four: Use of molecular docking computational tools in drug discovery -- 1. Introduction -- 2. Molecular docking -- 2.1. Theory of docking -- 2.2. Searching algorithm -- 2.2.1. Systematic methods -- 2.2.2. Stochastic methods -- 2.2.3. Scoring functions -- 2.2.3.1. Tailored scoring functions -- 2.3. Practical aspects in molecular docking -- 2.3.1. Protein preparation -- 2.3.1.1. Protonation state -- 2.3.1.2. Binding site definition and cavity detection -- 2.3.1.3. Protein flexibility -- 2.3.1.3.1. Soft docking and side chain rotamer libraries -- 2.3.1.3.2. Ensemble docking -- 2.3.1.4. Structural water molecules -- 2.3.1.4.1. How to recognise active water? -- 2.3.2. Ligand preparation -- 2.4. Small molecule databases -- 2.4.1. ZINC database -- 2.4.2. ENAMINE database -- 2.4.3. NCI open database -- 2.4.4. ChEMBL -- 2.4.5. DrugBank -- 2.4.6. ASINEX database -- 2.4.7. Cambridge structural database (CSD) -- 2.4.8. PubChem -- 3. Fragment-based screening -- 4. Protein-protein docking -- 5. Protein-peptide docking -- 6. Nucleic acid docking -- 7. Current challenges -- 7.1. Blind docking -- 7.2. Covalent docking -- 7.3. Reverse docking -- 8. Looking forward -- References -- Chapter Five: An industrial perspective on co-crystals: Screening, identification and development of the less utilised so ... -- 1. Introduction -- 2. What are co-crystals? -- 2.1. History and discovery -- 2.1.1. Crystal engineering -- 2.1.2. Cinnamic acid example -- 2.2. The salt co-crystal continuum.
|
505 |
8 |
|
|a 3. Intellectual property and regulatory perspective on co-crystals -- 4. Generation, characterisation, and development of co-crystals -- 4.1. Designing screens and synthons -- 4.1.1. Supramolecular synthons -- 4.2. Screening by grinding -- 4.2.1. Synthesis of pharmaceutical co-crystals -- 4.2.2. Mechanochemical co-crystal screening -- 4.2.3. Liquid-assisted grinding (LAG) -- 4.2.4. In situ monitoring -- 4.3. Screening by solution methods -- 4.3.1. Evaporative crystallisation -- 4.3.2. Cooling crystallisation -- 4.3.3. Anti-solvent crystallisation -- 4.3.4. Solution-mediated phase transformation (slurry conversion) methods -- 4.4. Characterisation of co-crystals -- 4.4.1. Single crystal X-ray diffraction (SCXRD) -- 4.4.2. Powder X-ray diffraction (XRPD) -- 4.4.3. Solid-state NMR -- 4.4.4. Infrared and Raman spectroscopy -- 4.5. Importance of phase diagrams -- 4.5.1. Binary phase diagrams -- 4.5.2. Ternary phase diagrams -- 4.6. Scaling up of co-crystals -- 4.6.1. Mechanochemistry -- 4.6.2. Twin screw extrusion (TSE) -- 4.6.3. Resonant acoustic mixing (RAM) -- 4.6.4. High shear granulation (HSG) -- 4.6.5. Solution based scale up -- 4.6.6. Solubility -- 4.6.7. Nucleation and seeding -- 4.6.8. Crystal growth -- 4.6.9. Process analytical technologies -- 4.6.10. Case studies -- 4.7. Formulating co-crystals -- 5. Application of co-crystals -- 5.1. Processability -- 5.2. Solubility -- 5.3. Bioavailability -- 5.4. Improving formulation -- 5.5. Permeability -- 5.6. Drug-drug co-crystals -- 5.6.1. Dual action -- 5.6.2. Non-commercial drug-drug co-crystals -- 5.7. Purification and chiral resolution -- 5.7.1. Diastereomeric co-crystals -- 5.7.2. Preferential crystallisation of co-crystals -- 6. Summary and looking forward -- References.
|
650 |
|
0 |
|a Pharmaceutical chemistry.
|
650 |
|
2 |
|a Chemistry, Pharmaceutical
|0 (DNLM)D002626
|
650 |
|
6 |
|a Chimie pharmaceutique.
|0 (CaQQLa)201-0028674
|
650 |
|
7 |
|a Pharmaceutical chemistry
|2 fast
|0 (OCoLC)fst01060115
|
700 |
1 |
|
|a Cox, Brian
|c (Chemist),
|e editor.
|
700 |
1 |
|
|a Witty, D. R.
|q (David R.),
|e editor.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00796468/60
|z Texto completo
|