Introduction to Fracture Mechanics /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands ; Cambridge, MA, United States :
Elsevier,
[2021]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- INTRODUCTION TO FRACTURE MECHANICS
- INTRODUCTION TO FRACTURE MECHANICS
- Contents
- Preface
- 1
- Introduction
- 2
- Foundations of fracture mechanics
- 2.1 Ideal fracture strength
- 2.2 Griffith fracture theory
- 2.3 Orowan approach
- 2.4 Origins of fracture mechanics theory
- References
- 3
- Linear-elastic fracture mechanics (LEFM)
- 3.1 Stress analysis of cracks: Williams 1/r singularity and stress-intensity factor K
- 3.1.1 Crack-tip fields
- 3.1.2 Crack-tip stress triaxiality
- 3.2 Crack-tip plasticity: plastic-zone size
- 3.3 LEFM fracture criterion
- 4.6 JR(a) resistance curves
- 4.6.1 Crack-growth toughness
- 4.6.2 Measurement of JR(a) resistance curves
- 4.6.3 Measurement of J-toughness values for cleavage fracture
- 4.7 T-stress and the modification of crack-tip fields
- 4.7.1 Definition of the T-stress
- 4.7.2 Two-parameter fracture mechanics
- References
- 5
- Crack-tip opening displacement (CTOD)
- 5.1 Introduction
- 5.2 Calculation of the CTOD
- 5.3 Measurement of the CTOD
- 5.4 Crack-tip opening angle (CTOA)
- References
- 6
- Micromechanics modeling of fracture
- 6.1 Introduction
- 6.2 Fracture mechanisms
- 3.3.1 KI = Kc
- 3.3.2 Plane-strain fracture
- 3.3.3 Measurement of the plane-strain fracture toughness KIc
- 3.3.4 Use of K as a fracture criterion in structures
- 3.3.5 Flat vs. slant fracture surfaces
- 3.3.6 Non fully plane-strain fracture
- 3.3.7 Accuracy of KIc
- 3.3.8 Relevance of KIc
- 3.4 G-based energy approach
- 3.4.1 Definition of G
- 3.4.2 Characterizing parameter vs. energy release rate approach
- 3.5 Crack-resistance R-curves
- 3.6 Mixed-mode fracture
- 3.6.1 Inclined cracks
- 3.6.2 Deflected cracks
- 3.6.3 Interface cracks
- 3.6.4 Mixed-mode crack-driving force
- 3.6.5 Crack paths
- References
- 4
- Nonlinear-elastic fracture mechanics (NLEFM)
- 4.1 Introduction
- 4.2 Stress analysis of cracks: HRR singularity and J-integral
- 4.2.1 J as a characterizing parameter
- 4.2.2 J as a path-independent integral
- 4.2.3 J as an energy parameter
- 4.3 J as a fracture criterion
- 4.3.1 J=Jc
- 4.3.2 Importance of validity criteria (size requirements)
- 4.4 J-solutions
- 4.4.1 Deep single-edge cracked bend specimen
- 4.4.2 General form of J-solution for various specimen geometries
- 4.5 Measurement of the fracture toughness JIc
- 6.2.1 Ductile fracture
- 6.2.2 Brittle fracture
- 6.3 Cleavage and ductile fracture models
- 6.3.1 RKR model for cleavage fracture
- 6.3.2 Critical strain model for ductile fracture
- 6.3.3 Critical CTOA model for ductile crack growth
- 6.4 Intrinsic vs. extrinsic toughening
- 6.4.1 Toughening in metallic materials
- 6.4.2 Toughening in ceramic materials
- 6.4.3 Toughening in polymeric materials
- 6.4.4 Toughening in composite materials
- References
- 7
- Application to subcritical crack growth
- 7.1 Introduction
- 7.2 Environmentally-assisted cracking
- 7.3 Creep-crack growth