Cargando…

Introduction to Fracture Mechanics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ritchie, R. O. (Robert O.) (Autor), Liu, Dong (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Cambridge, MA, United States : Elsevier, [2021]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • INTRODUCTION TO FRACTURE MECHANICS
  • INTRODUCTION TO FRACTURE MECHANICS
  • Contents
  • Preface
  • 1
  • Introduction
  • 2
  • Foundations of fracture mechanics
  • 2.1 Ideal fracture strength
  • 2.2 Griffith fracture theory
  • 2.3 Orowan approach
  • 2.4 Origins of fracture mechanics theory
  • References
  • 3
  • Linear-elastic fracture mechanics (LEFM)
  • 3.1 Stress analysis of cracks: Williams 1/r singularity and stress-intensity factor K
  • 3.1.1 Crack-tip fields
  • 3.1.2 Crack-tip stress triaxiality
  • 3.2 Crack-tip plasticity: plastic-zone size
  • 3.3 LEFM fracture criterion
  • 4.6 JR(a) resistance curves
  • 4.6.1 Crack-growth toughness
  • 4.6.2 Measurement of JR(a) resistance curves
  • 4.6.3 Measurement of J-toughness values for cleavage fracture
  • 4.7 T-stress and the modification of crack-tip fields
  • 4.7.1 Definition of the T-stress
  • 4.7.2 Two-parameter fracture mechanics
  • References
  • 5
  • Crack-tip opening displacement (CTOD)
  • 5.1 Introduction
  • 5.2 Calculation of the CTOD
  • 5.3 Measurement of the CTOD
  • 5.4 Crack-tip opening angle (CTOA)
  • References
  • 6
  • Micromechanics modeling of fracture
  • 6.1 Introduction
  • 6.2 Fracture mechanisms
  • 3.3.1 KI = Kc
  • 3.3.2 Plane-strain fracture
  • 3.3.3 Measurement of the plane-strain fracture toughness KIc
  • 3.3.4 Use of K as a fracture criterion in structures
  • 3.3.5 Flat vs. slant fracture surfaces
  • 3.3.6 Non fully plane-strain fracture
  • 3.3.7 Accuracy of KIc
  • 3.3.8 Relevance of KIc
  • 3.4 G-based energy approach
  • 3.4.1 Definition of G
  • 3.4.2 Characterizing parameter vs. energy release rate approach
  • 3.5 Crack-resistance R-curves
  • 3.6 Mixed-mode fracture
  • 3.6.1 Inclined cracks
  • 3.6.2 Deflected cracks
  • 3.6.3 Interface cracks
  • 3.6.4 Mixed-mode crack-driving force
  • 3.6.5 Crack paths
  • References
  • 4
  • Nonlinear-elastic fracture mechanics (NLEFM)
  • 4.1 Introduction
  • 4.2 Stress analysis of cracks: HRR singularity and J-integral
  • 4.2.1 J as a characterizing parameter
  • 4.2.2 J as a path-independent integral
  • 4.2.3 J as an energy parameter
  • 4.3 J as a fracture criterion
  • 4.3.1 J=Jc
  • 4.3.2 Importance of validity criteria (size requirements)
  • 4.4 J-solutions
  • 4.4.1 Deep single-edge cracked bend specimen
  • 4.4.2 General form of J-solution for various specimen geometries
  • 4.5 Measurement of the fracture toughness JIc
  • 6.2.1 Ductile fracture
  • 6.2.2 Brittle fracture
  • 6.3 Cleavage and ductile fracture models
  • 6.3.1 RKR model for cleavage fracture
  • 6.3.2 Critical strain model for ductile fracture
  • 6.3.3 Critical CTOA model for ductile crack growth
  • 6.4 Intrinsic vs. extrinsic toughening
  • 6.4.1 Toughening in metallic materials
  • 6.4.2 Toughening in ceramic materials
  • 6.4.3 Toughening in polymeric materials
  • 6.4.4 Toughening in composite materials
  • References
  • 7
  • Application to subcritical crack growth
  • 7.1 Introduction
  • 7.2 Environmentally-assisted cracking
  • 7.3 Creep-crack growth