Cargando…

Nanobiotechnology : microbes and plant assisted synthesis of nanoparticles, mechanisms and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ghosh, Sougata, Webster, Thomas J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1
  • Nanobiotechnology: methods, applications, and future prospects
  • 1.1
  • Introduction and historical background
  • 1.2
  • Overview of conventional methods for synthesis
  • 1.2.1
  • Physical methods used for nanoparticle synthesis
  • 1.2.2
  • Chemical methods used for nanoparticle synthesis
  • 1.2.3
  • Biological methods for the synthesis of nanoparticles
  • 1.2.3.1
  • Synthesis of nanoparticles using bacteria
  • 1.2.3.2
  • Synthesis of nanoparticles using fungi and yeast
  • 1.2.3.3
  • Synthesis of nanoparticles using algae
  • 1.2.3.4
  • Synthesis of nanoparticles using actinomycetes
  • 1.2.3.5
  • Synthesis of nanoparticles using products of biological origin
  • 1.2.3.6
  • Synthesis of nanoparticles using plant material (green synthesis)
  • 1.2.3.6.1
  • Synthesis of nanoparticles using weeds
  • 1.2.3.6.2
  • Synthesis of nanoparticles using fruit extracts
  • 1.2.3.6.3
  • Synthesis of nanoparticles using extracts from plant roots
  • 1.2.3.6.4
  • Synthesis of nanoparticles using seeds
  • 1.2.3.6.5
  • Synthesis of nanoparticles using plant leaf extracts
  • 1.3
  • Proposed mechanism of biological synthesis
  • 1.3.1
  • Factors affecting the nanoparticle synthesis reactions
  • 1.4
  • Medical applications of nanobiotechnology
  • 1.4.1
  • Peptide nanobiotechnology, protein nanotubes, and immunoproteomics
  • 1.4.2
  • Applications of nanobionanocomposites in wound healing and diseases
  • 1.4.3
  • Nanomaterial applications in cancer immunotherapy
  • 1.4.4
  • Applications of circular RNAs, siRNAs, micro-RNA, and self-assembled DNA nanostructures in cancer
  • 1.4.5
  • Application of archaeal S-layers in nanobiotechnology
  • 1.4.6
  • Applications of nanobiotechnology in gene therapy, tissue engineering, and drug delivery
  • 1.5
  • Conclusions and future perspectives
  • References.
  • Chapter 2
  • Characterization techniques for morphological and physicochemical evaluation of nanomaterials
  • 2.1
  • Introduction
  • 2.2
  • Classification of characterization techniques
  • 2.2.1
  • Physical characterization
  • 2.2.1.1
  • Particle in a suspension (measuring particle size, size distribution, surface charge)
  • 2.2.1.1.1
  • Dynamic light scattering
  • 2.2.1.1.2
  • Nanoparticle tracking analysis
  • 2.2.1.1.3
  • Tunable resistive pulse sensing
  • 2.2.1.2
  • Particle in a suspension (measuring particle size and density)
  • 2.2.1.2.1
  • Resonant mass measurement
  • 2.2.1.3
  • Surface area analysis of NM
  • 2.2.1.3.1
  • Brunauer-Emmett-Teller (BET) analysis
  • 2.2.1.4
  • Microscopic techniques: size, size distribution, and morphological characterizations
  • 2.2.1.4.1
  • Transmission electron microscopy
  • 2.2.1.4.2
  • Scanning electron microscopy
  • 2.2.1.4.3
  • Atomic force microscopy
  • 2.2.2
  • Morphological characterization with elemental analysis
  • 2.2.2.1
  • Energy dispersive X-ray spectroscopy (EDS or EDX) and wavelength-dispersive X-ray spectroscopy (WDXS)
  • 2.2.3
  • Structural analysis
  • 2.2.3.1
  • X-ray diffraction
  • 2.2.4
  • Chemical analysis
  • 2.2.4.1
  • Surface analysis
  • 2.2.4.1.1
  • X-ray photoelectron spectroscopy
  • 2.2.4.1.2
  • Other surface characterization techniques
  • 2.2.4.2
  • Bulk analysis
  • 2.2.4.2.1
  • Nuclear magnetic resonance (NMR) spectroscopy
  • 2.2.4.2.2
  • Electron paramagnetic resonance
  • 2.2.4.2.3
  • Fourier transform infrared spectroscopy
  • 2.2.4.2.4
  • Raman spectroscopy
  • 2.2.4.2.5
  • Mass spectrometry
  • 2.2.4.2.6
  • Inductively coupled plasma (ICP) analysis
  • 2.2.5
  • Optical characterization
  • 2.2.5.1
  • Ultraviolet-visible-IR spectroscopy
  • 2.2.5.1.1
  • Absorption spectroscopy
  • 2.2.5.1.2
  • Reflectance spectroscopy
  • 2.2.5.2
  • Fluorescence spectroscopy
  • 2.2.6
  • Thermal analysis.
  • 2.2.6.1
  • Differential scanning calorimetry (DSC) and differential thermal analysis (DTA)
  • 2.2.6.2
  • Thermogravimetric analysis
  • 2.3
  • Conclusions and future perspectives
  • Acknowledgment
  • References
  • Chapter 3
  • Nanotheranostics and biocompatibility
  • 3.1
  • Introduction
  • 3.1.1
  • The beginning of nanotheranostics
  • 3.2
  • Nanomedicines as theranostics
  • 3.2.1
  • Different types of nanomaterials used in theranostic nanomedicines and their applications
  • 3.2.2
  • Types of nanotheranostic agents developed for treatment
  • 3.3
  • Clinical applications
  • 3.4
  • Risk associated with nanotheranostics
  • 3.5
  • Recent breakthroughs in diagnostics and therapeutics
  • 3.6
  • Conclusions and future perspectives
  • References
  • Chapter 4
  • Bacteriogenic silver nanoparticles: mechanisms and applications
  • 4.1
  • Introduction
  • 4.2
  • Bacterial synthesis of AgNPs
  • 4.3
  • Mechanism of the synthesis of microbial AgNPs
  • 4.4
  • Enzymes involved in the biosynthesis of AgNPs
  • 4.5
  • Applications of bacteriogenic AgNPs
  • 4.5.1
  • Nanobioremediation: metal toxicity removal and dye degradation
  • 4.5.2
  • AgNPs as novel therapeutic agent
  • 4.5.2.1
  • Antibacterial agent
  • 4.5.2.2
  • Antifungal agent
  • 4.5.2.3
  • Antiviral agent
  • 4.5.2.4
  • Antiprotozoal agent
  • 4.5.2.5
  • Insecticidal agent
  • 4.5.2.6
  • Cytotoxic agent
  • 4.5.2.7
  • Antibiofilm agent
  • 4.6
  • Recent developments in nanoparticles-based drug delivery systems
  • 4.7
  • Discussion
  • 4.8
  • Conclusions and future perspectives
  • References
  • Further reading
  • Chapter 5
  • Bacteriogenic synthesis of gold nanoparticles: mechanisms and applications
  • 5.1
  • Introduction
  • 5.2
  • Synthesis methods of AuNPs
  • 5.2.1
  • Bacteria-mediated synthesis of AuNPs
  • 5.2.1.1
  • Intracellular nanoparticle synthesis
  • 5.2.1.2
  • Extracellular nanoparticle synthesis
  • 5.3
  • Mechanism.
  • 5.4
  • Green approach for synthesis of AuNPs
  • 5.5
  • Applications
  • 5.6
  • Conclusions and future perspectives
  • Acknowledgments
  • Author contributions
  • References
  • Chapter 6
  • Mycosynthesis of silver nanoparticles: mechanism and applications
  • 6.1
  • Introduction
  • 6.2
  • Fungi-mediated synthesis of AgNPs
  • 6.2.1
  • Fungi-mediated AgNPs synthesis by intracellular method
  • 6.2.2
  • Fungi-mediated AgNPs synthesis by extracellular method
  • 6.3
  • Size and shape of AgNPs
  • 6.4
  • Mode of action
  • 6.5
  • Factors influencing the synthesis of AgNPs
  • 6.5.1
  • Effect of pH
  • 6.5.2
  • Effect of temperature
  • 6.5.3
  • Effect of culture medium composition
  • 6.5.4
  • Effect of fungal biomass
  • 6.5.5
  • Effect of concentration of silver nitrate
  • 6.5.6
  • Effect of capping and stabilization of the NPs
  • 6.6
  • Application of mycologically synthesized nanoparticles
  • 6.6.1
  • Healthcare
  • 6.6.2
  • Agriculture and pest control
  • 6.6.3
  • Food preservation
  • 6.6.4
  • Anticancer agent
  • 6.6.5
  • Catalytic applications
  • 6.7
  • Conclusions and future perspective
  • References
  • Chapter 7
  • Mycosynthesis of gold nanoparticles: mechanisms and applications
  • 7.1
  • Introduction
  • 7.2
  • Mycosynthesis approach on metal nanoparticles
  • 7.3
  • Mechanism of mycosynthesis of AuNPs
  • 7.3.1
  • Intracellular Au reduction
  • 7.3.2
  • Extracellular Au reduction
  • 7.3.3
  • Capping
  • 7.4
  • Physicochemical properties of AuNPs
  • 7.4.1
  • Physical properties of AuNPs
  • 7.4.2
  • Conjugation strategies
  • 7.4.3
  • Advantages of the mycosynthesis approach
  • 7.5
  • Application of AuNPs
  • 7.5.1
  • Target drug delivery
  • 7.5.2
  • Biosensors
  • 7.5.3 Biomarkers
  • 7.5.4 Cosmetic
  • 7.6
  • Design of a bioreactor for AuNPs synthesis
  • 7.7
  • Conclusions and future perspectives
  • Acknowledgments
  • References
  • Chapter 8
  • Genetically modified microbes for nanobiotechnology.
  • 8.1
  • Introduction
  • 8.2
  • Biological synthesis of nanoparticles
  • 8.2.1
  • Metallic nanoparticles
  • 8.2.2
  • Oxide nanoparticles
  • 8.2.3
  • Sulfide nanoparticles
  • 8.3
  • Genetically engineered microorganisms for the production of nanoparticles
  • 8.4
  • Conclusions and future perspectives
  • References
  • Chapter 9
  • Viruses and nanotechnology
  • 9.1
  • Introduction
  • 9.2
  • Virus-mediated nanoparticle synthesis
  • 9.2.1
  • Tobacco mosaic virus
  • 9.2.2
  • M13 bacteriophage
  • 9.2.3
  • Squash leaf curl China virus
  • 9.2.4
  • Engineered P22 virus
  • 9.2.5
  • Cowpea chlorotic mottle virus
  • 9.3
  • Applications
  • 9.4
  • Conclusions and future perspectives
  • Acknowledgments
  • References
  • Chapter 10
  • Algae-assisted synthesis of nanoparticles
  • 10.1
  • Introduction
  • 10.2
  • Current scenario of algae-assisted nanoparticle synthesis and applications
  • 10.2.1 Blue-green algae
  • 10.2.2
  • Green algae
  • 10.2.3
  • Red algae
  • 10.2.4
  • Brown algae
  • 10.3
  • Conclusions and future perspectives
  • Acknowledgment
  • References
  • Chapter 11
  • Phytogenic synthesis of silver nanoparticles: mechanisms and applications
  • 11.1
  • Introduction
  • 11.2
  • Recent methods of AgNPs synthesis
  • 11.2.1
  • Chemical methods for AgNPs synthesis
  • 11.2.2
  • Biological methods for AgNPs synthesis
  • 11.2.3
  • Bacterial cell-mediated synthesis (bacteriogenic synthesis)
  • 11.2.4
  • Fungal cell-mediated synthesis (mycogenic synthesis)
  • 11.2.5
  • Plant-mediated synthesis (phytogenic synthesis)
  • 11.3
  • Mechanism of synthesis (mechanistic approach)
  • 11.4
  • Plant extract-mediated synthesis of AgNPs
  • 11.5
  • Gum-resin-mediated synthesis
  • 11.6
  • Mechanism of antimicrobial action of AgNPs
  • 11.7
  • Applications of AgNPs
  • 11.7.1
  • Antibacterial agent
  • 11.7.2
  • Antifungal agent
  • 11.7.3
  • Antiviral agent
  • 11.7.4
  • Antiinflammatory agent
  • 11.7.5
  • AgNP as therapeutics.
  • 11.7.6
  • AgNPs as nanobiosensor.