Nanobiotechnology : microbes and plant assisted synthesis of nanoparticles, mechanisms and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Elsevier,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title
- Copyright
- Contents
- Contributors
- Preface
- Chapter 1
- Nanobiotechnology: methods, applications, and future prospects
- 1.1
- Introduction and historical background
- 1.2
- Overview of conventional methods for synthesis
- 1.2.1
- Physical methods used for nanoparticle synthesis
- 1.2.2
- Chemical methods used for nanoparticle synthesis
- 1.2.3
- Biological methods for the synthesis of nanoparticles
- 1.2.3.1
- Synthesis of nanoparticles using bacteria
- 1.2.3.2
- Synthesis of nanoparticles using fungi and yeast
- 1.2.3.3
- Synthesis of nanoparticles using algae
- 1.2.3.4
- Synthesis of nanoparticles using actinomycetes
- 1.2.3.5
- Synthesis of nanoparticles using products of biological origin
- 1.2.3.6
- Synthesis of nanoparticles using plant material (green synthesis)
- 1.2.3.6.1
- Synthesis of nanoparticles using weeds
- 1.2.3.6.2
- Synthesis of nanoparticles using fruit extracts
- 1.2.3.6.3
- Synthesis of nanoparticles using extracts from plant roots
- 1.2.3.6.4
- Synthesis of nanoparticles using seeds
- 1.2.3.6.5
- Synthesis of nanoparticles using plant leaf extracts
- 1.3
- Proposed mechanism of biological synthesis
- 1.3.1
- Factors affecting the nanoparticle synthesis reactions
- 1.4
- Medical applications of nanobiotechnology
- 1.4.1
- Peptide nanobiotechnology, protein nanotubes, and immunoproteomics
- 1.4.2
- Applications of nanobionanocomposites in wound healing and diseases
- 1.4.3
- Nanomaterial applications in cancer immunotherapy
- 1.4.4
- Applications of circular RNAs, siRNAs, micro-RNA, and self-assembled DNA nanostructures in cancer
- 1.4.5
- Application of archaeal S-layers in nanobiotechnology
- 1.4.6
- Applications of nanobiotechnology in gene therapy, tissue engineering, and drug delivery
- 1.5
- Conclusions and future perspectives
- References.
- Chapter 2
- Characterization techniques for morphological and physicochemical evaluation of nanomaterials
- 2.1
- Introduction
- 2.2
- Classification of characterization techniques
- 2.2.1
- Physical characterization
- 2.2.1.1
- Particle in a suspension (measuring particle size, size distribution, surface charge)
- 2.2.1.1.1
- Dynamic light scattering
- 2.2.1.1.2
- Nanoparticle tracking analysis
- 2.2.1.1.3
- Tunable resistive pulse sensing
- 2.2.1.2
- Particle in a suspension (measuring particle size and density)
- 2.2.1.2.1
- Resonant mass measurement
- 2.2.1.3
- Surface area analysis of NM
- 2.2.1.3.1
- Brunauer-Emmett-Teller (BET) analysis
- 2.2.1.4
- Microscopic techniques: size, size distribution, and morphological characterizations
- 2.2.1.4.1
- Transmission electron microscopy
- 2.2.1.4.2
- Scanning electron microscopy
- 2.2.1.4.3
- Atomic force microscopy
- 2.2.2
- Morphological characterization with elemental analysis
- 2.2.2.1
- Energy dispersive X-ray spectroscopy (EDS or EDX) and wavelength-dispersive X-ray spectroscopy (WDXS)
- 2.2.3
- Structural analysis
- 2.2.3.1
- X-ray diffraction
- 2.2.4
- Chemical analysis
- 2.2.4.1
- Surface analysis
- 2.2.4.1.1
- X-ray photoelectron spectroscopy
- 2.2.4.1.2
- Other surface characterization techniques
- 2.2.4.2
- Bulk analysis
- 2.2.4.2.1
- Nuclear magnetic resonance (NMR) spectroscopy
- 2.2.4.2.2
- Electron paramagnetic resonance
- 2.2.4.2.3
- Fourier transform infrared spectroscopy
- 2.2.4.2.4
- Raman spectroscopy
- 2.2.4.2.5
- Mass spectrometry
- 2.2.4.2.6
- Inductively coupled plasma (ICP) analysis
- 2.2.5
- Optical characterization
- 2.2.5.1
- Ultraviolet-visible-IR spectroscopy
- 2.2.5.1.1
- Absorption spectroscopy
- 2.2.5.1.2
- Reflectance spectroscopy
- 2.2.5.2
- Fluorescence spectroscopy
- 2.2.6
- Thermal analysis.
- 2.2.6.1
- Differential scanning calorimetry (DSC) and differential thermal analysis (DTA)
- 2.2.6.2
- Thermogravimetric analysis
- 2.3
- Conclusions and future perspectives
- Acknowledgment
- References
- Chapter 3
- Nanotheranostics and biocompatibility
- 3.1
- Introduction
- 3.1.1
- The beginning of nanotheranostics
- 3.2
- Nanomedicines as theranostics
- 3.2.1
- Different types of nanomaterials used in theranostic nanomedicines and their applications
- 3.2.2
- Types of nanotheranostic agents developed for treatment
- 3.3
- Clinical applications
- 3.4
- Risk associated with nanotheranostics
- 3.5
- Recent breakthroughs in diagnostics and therapeutics
- 3.6
- Conclusions and future perspectives
- References
- Chapter 4
- Bacteriogenic silver nanoparticles: mechanisms and applications
- 4.1
- Introduction
- 4.2
- Bacterial synthesis of AgNPs
- 4.3
- Mechanism of the synthesis of microbial AgNPs
- 4.4
- Enzymes involved in the biosynthesis of AgNPs
- 4.5
- Applications of bacteriogenic AgNPs
- 4.5.1
- Nanobioremediation: metal toxicity removal and dye degradation
- 4.5.2
- AgNPs as novel therapeutic agent
- 4.5.2.1
- Antibacterial agent
- 4.5.2.2
- Antifungal agent
- 4.5.2.3
- Antiviral agent
- 4.5.2.4
- Antiprotozoal agent
- 4.5.2.5
- Insecticidal agent
- 4.5.2.6
- Cytotoxic agent
- 4.5.2.7
- Antibiofilm agent
- 4.6
- Recent developments in nanoparticles-based drug delivery systems
- 4.7
- Discussion
- 4.8
- Conclusions and future perspectives
- References
- Further reading
- Chapter 5
- Bacteriogenic synthesis of gold nanoparticles: mechanisms and applications
- 5.1
- Introduction
- 5.2
- Synthesis methods of AuNPs
- 5.2.1
- Bacteria-mediated synthesis of AuNPs
- 5.2.1.1
- Intracellular nanoparticle synthesis
- 5.2.1.2
- Extracellular nanoparticle synthesis
- 5.3
- Mechanism.
- 5.4
- Green approach for synthesis of AuNPs
- 5.5
- Applications
- 5.6
- Conclusions and future perspectives
- Acknowledgments
- Author contributions
- References
- Chapter 6
- Mycosynthesis of silver nanoparticles: mechanism and applications
- 6.1
- Introduction
- 6.2
- Fungi-mediated synthesis of AgNPs
- 6.2.1
- Fungi-mediated AgNPs synthesis by intracellular method
- 6.2.2
- Fungi-mediated AgNPs synthesis by extracellular method
- 6.3
- Size and shape of AgNPs
- 6.4
- Mode of action
- 6.5
- Factors influencing the synthesis of AgNPs
- 6.5.1
- Effect of pH
- 6.5.2
- Effect of temperature
- 6.5.3
- Effect of culture medium composition
- 6.5.4
- Effect of fungal biomass
- 6.5.5
- Effect of concentration of silver nitrate
- 6.5.6
- Effect of capping and stabilization of the NPs
- 6.6
- Application of mycologically synthesized nanoparticles
- 6.6.1
- Healthcare
- 6.6.2
- Agriculture and pest control
- 6.6.3
- Food preservation
- 6.6.4
- Anticancer agent
- 6.6.5
- Catalytic applications
- 6.7
- Conclusions and future perspective
- References
- Chapter 7
- Mycosynthesis of gold nanoparticles: mechanisms and applications
- 7.1
- Introduction
- 7.2
- Mycosynthesis approach on metal nanoparticles
- 7.3
- Mechanism of mycosynthesis of AuNPs
- 7.3.1
- Intracellular Au reduction
- 7.3.2
- Extracellular Au reduction
- 7.3.3
- Capping
- 7.4
- Physicochemical properties of AuNPs
- 7.4.1
- Physical properties of AuNPs
- 7.4.2
- Conjugation strategies
- 7.4.3
- Advantages of the mycosynthesis approach
- 7.5
- Application of AuNPs
- 7.5.1
- Target drug delivery
- 7.5.2
- Biosensors
- 7.5.3 Biomarkers
- 7.5.4 Cosmetic
- 7.6
- Design of a bioreactor for AuNPs synthesis
- 7.7
- Conclusions and future perspectives
- Acknowledgments
- References
- Chapter 8
- Genetically modified microbes for nanobiotechnology.
- 8.1
- Introduction
- 8.2
- Biological synthesis of nanoparticles
- 8.2.1
- Metallic nanoparticles
- 8.2.2
- Oxide nanoparticles
- 8.2.3
- Sulfide nanoparticles
- 8.3
- Genetically engineered microorganisms for the production of nanoparticles
- 8.4
- Conclusions and future perspectives
- References
- Chapter 9
- Viruses and nanotechnology
- 9.1
- Introduction
- 9.2
- Virus-mediated nanoparticle synthesis
- 9.2.1
- Tobacco mosaic virus
- 9.2.2
- M13 bacteriophage
- 9.2.3
- Squash leaf curl China virus
- 9.2.4
- Engineered P22 virus
- 9.2.5
- Cowpea chlorotic mottle virus
- 9.3
- Applications
- 9.4
- Conclusions and future perspectives
- Acknowledgments
- References
- Chapter 10
- Algae-assisted synthesis of nanoparticles
- 10.1
- Introduction
- 10.2
- Current scenario of algae-assisted nanoparticle synthesis and applications
- 10.2.1 Blue-green algae
- 10.2.2
- Green algae
- 10.2.3
- Red algae
- 10.2.4
- Brown algae
- 10.3
- Conclusions and future perspectives
- Acknowledgment
- References
- Chapter 11
- Phytogenic synthesis of silver nanoparticles: mechanisms and applications
- 11.1
- Introduction
- 11.2
- Recent methods of AgNPs synthesis
- 11.2.1
- Chemical methods for AgNPs synthesis
- 11.2.2
- Biological methods for AgNPs synthesis
- 11.2.3
- Bacterial cell-mediated synthesis (bacteriogenic synthesis)
- 11.2.4
- Fungal cell-mediated synthesis (mycogenic synthesis)
- 11.2.5
- Plant-mediated synthesis (phytogenic synthesis)
- 11.3
- Mechanism of synthesis (mechanistic approach)
- 11.4
- Plant extract-mediated synthesis of AgNPs
- 11.5
- Gum-resin-mediated synthesis
- 11.6
- Mechanism of antimicrobial action of AgNPs
- 11.7
- Applications of AgNPs
- 11.7.1
- Antibacterial agent
- 11.7.2
- Antifungal agent
- 11.7.3
- Antiviral agent
- 11.7.4
- Antiinflammatory agent
- 11.7.5
- AgNP as therapeutics.
- 11.7.6
- AgNPs as nanobiosensor.