|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1252704261 |
003 |
OCoLC |
005 |
20231120010544.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210525s2021 xx o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d UIU
|d OCLCO
|d YDX
|d EBLCP
|d N$T
|d UKAHL
|d OCLCF
|d OCLCQ
|d UKMGB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d COM
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC138887
|2 bnb
|
016 |
7 |
|
|a 020129599
|2 Uk
|
020 |
|
|
|a 9780128231159
|q (electronic bk.)
|
020 |
|
|
|a 0128231157
|q (electronic bk.)
|
020 |
|
|
|z 9780128228784
|
035 |
|
|
|a (OCoLC)1252704261
|
050 |
|
4 |
|a TP248.25.N35
|b N36 2021
|
082 |
0 |
4 |
|a 660.6
|2 23
|
245 |
0 |
0 |
|a Nanobiotechnology :
|b microbes and plant assisted synthesis of nanoparticles, mechanisms and applications /
|c edited by Sougata Ghosh, Thomas J. Webster.
|
260 |
|
|
|a [Place of publication not identified] :
|b Elsevier,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover -- Title -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1 -- Nanobiotechnology: methods, applications, and future prospects -- 1.1 -- Introduction and historical background -- 1.2 -- Overview of conventional methods for synthesis -- 1.2.1 -- Physical methods used for nanoparticle synthesis -- 1.2.2 -- Chemical methods used for nanoparticle synthesis -- 1.2.3 -- Biological methods for the synthesis of nanoparticles -- 1.2.3.1 -- Synthesis of nanoparticles using bacteria -- 1.2.3.2 -- Synthesis of nanoparticles using fungi and yeast -- 1.2.3.3 -- Synthesis of nanoparticles using algae -- 1.2.3.4 -- Synthesis of nanoparticles using actinomycetes -- 1.2.3.5 -- Synthesis of nanoparticles using products of biological origin -- 1.2.3.6 -- Synthesis of nanoparticles using plant material (green synthesis) -- 1.2.3.6.1 -- Synthesis of nanoparticles using weeds -- 1.2.3.6.2 -- Synthesis of nanoparticles using fruit extracts -- 1.2.3.6.3 -- Synthesis of nanoparticles using extracts from plant roots -- 1.2.3.6.4 -- Synthesis of nanoparticles using seeds -- 1.2.3.6.5 -- Synthesis of nanoparticles using plant leaf extracts -- 1.3 -- Proposed mechanism of biological synthesis -- 1.3.1 -- Factors affecting the nanoparticle synthesis reactions -- 1.4 -- Medical applications of nanobiotechnology -- 1.4.1 -- Peptide nanobiotechnology, protein nanotubes, and immunoproteomics -- 1.4.2 -- Applications of nanobionanocomposites in wound healing and diseases -- 1.4.3 -- Nanomaterial applications in cancer immunotherapy -- 1.4.4 -- Applications of circular RNAs, siRNAs, micro-RNA, and self-assembled DNA nanostructures in cancer -- 1.4.5 -- Application of archaeal S-layers in nanobiotechnology -- 1.4.6 -- Applications of nanobiotechnology in gene therapy, tissue engineering, and drug delivery -- 1.5 -- Conclusions and future perspectives -- References.
|
505 |
8 |
|
|a Chapter 2 -- Characterization techniques for morphological and physicochemical evaluation of nanomaterials -- 2.1 -- Introduction -- 2.2 -- Classification of characterization techniques -- 2.2.1 -- Physical characterization -- 2.2.1.1 -- Particle in a suspension (measuring particle size, size distribution, surface charge) -- 2.2.1.1.1 -- Dynamic light scattering -- 2.2.1.1.2 -- Nanoparticle tracking analysis -- 2.2.1.1.3 -- Tunable resistive pulse sensing -- 2.2.1.2 -- Particle in a suspension (measuring particle size and density) -- 2.2.1.2.1 -- Resonant mass measurement -- 2.2.1.3 -- Surface area analysis of NM -- 2.2.1.3.1 -- Brunauer-Emmett-Teller (BET) analysis -- 2.2.1.4 -- Microscopic techniques: size, size distribution, and morphological characterizations -- 2.2.1.4.1 -- Transmission electron microscopy -- 2.2.1.4.2 -- Scanning electron microscopy -- 2.2.1.4.3 -- Atomic force microscopy -- 2.2.2 -- Morphological characterization with elemental analysis -- 2.2.2.1 -- Energy dispersive X-ray spectroscopy (EDS or EDX) and wavelength-dispersive X-ray spectroscopy (WDXS) -- 2.2.3 -- Structural analysis -- 2.2.3.1 -- X-ray diffraction -- 2.2.4 -- Chemical analysis -- 2.2.4.1 -- Surface analysis -- 2.2.4.1.1 -- X-ray photoelectron spectroscopy -- 2.2.4.1.2 -- Other surface characterization techniques -- 2.2.4.2 -- Bulk analysis -- 2.2.4.2.1 -- Nuclear magnetic resonance (NMR) spectroscopy -- 2.2.4.2.2 -- Electron paramagnetic resonance -- 2.2.4.2.3 -- Fourier transform infrared spectroscopy -- 2.2.4.2.4 -- Raman spectroscopy -- 2.2.4.2.5 -- Mass spectrometry -- 2.2.4.2.6 -- Inductively coupled plasma (ICP) analysis -- 2.2.5 -- Optical characterization -- 2.2.5.1 -- Ultraviolet-visible-IR spectroscopy -- 2.2.5.1.1 -- Absorption spectroscopy -- 2.2.5.1.2 -- Reflectance spectroscopy -- 2.2.5.2 -- Fluorescence spectroscopy -- 2.2.6 -- Thermal analysis.
|
505 |
8 |
|
|a 2.2.6.1 -- Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) -- 2.2.6.2 -- Thermogravimetric analysis -- 2.3 -- Conclusions and future perspectives -- Acknowledgment -- References -- Chapter 3 -- Nanotheranostics and biocompatibility -- 3.1 -- Introduction -- 3.1.1 -- The beginning of nanotheranostics -- 3.2 -- Nanomedicines as theranostics -- 3.2.1 -- Different types of nanomaterials used in theranostic nanomedicines and their applications -- 3.2.2 -- Types of nanotheranostic agents developed for treatment -- 3.3 -- Clinical applications -- 3.4 -- Risk associated with nanotheranostics -- 3.5 -- Recent breakthroughs in diagnostics and therapeutics -- 3.6 -- Conclusions and future perspectives -- References -- Chapter 4 -- Bacteriogenic silver nanoparticles: mechanisms and applications -- 4.1 -- Introduction -- 4.2 -- Bacterial synthesis of AgNPs -- 4.3 -- Mechanism of the synthesis of microbial AgNPs -- 4.4 -- Enzymes involved in the biosynthesis of AgNPs -- 4.5 -- Applications of bacteriogenic AgNPs -- 4.5.1 -- Nanobioremediation: metal toxicity removal and dye degradation -- 4.5.2 -- AgNPs as novel therapeutic agent -- 4.5.2.1 -- Antibacterial agent -- 4.5.2.2 -- Antifungal agent -- 4.5.2.3 -- Antiviral agent -- 4.5.2.4 -- Antiprotozoal agent -- 4.5.2.5 -- Insecticidal agent -- 4.5.2.6 -- Cytotoxic agent -- 4.5.2.7 -- Antibiofilm agent -- 4.6 -- Recent developments in nanoparticles-based drug delivery systems -- 4.7 -- Discussion -- 4.8 -- Conclusions and future perspectives -- References -- Further reading -- Chapter 5 -- Bacteriogenic synthesis of gold nanoparticles: mechanisms and applications -- 5.1 -- Introduction -- 5.2 -- Synthesis methods of AuNPs -- 5.2.1 -- Bacteria-mediated synthesis of AuNPs -- 5.2.1.1 -- Intracellular nanoparticle synthesis -- 5.2.1.2 -- Extracellular nanoparticle synthesis -- 5.3 -- Mechanism.
|
505 |
8 |
|
|a 5.4 -- Green approach for synthesis of AuNPs -- 5.5 -- Applications -- 5.6 -- Conclusions and future perspectives -- Acknowledgments -- Author contributions -- References -- Chapter 6 -- Mycosynthesis of silver nanoparticles: mechanism and applications -- 6.1 -- Introduction -- 6.2 -- Fungi-mediated synthesis of AgNPs -- 6.2.1 -- Fungi-mediated AgNPs synthesis by intracellular method -- 6.2.2 -- Fungi-mediated AgNPs synthesis by extracellular method -- 6.3 -- Size and shape of AgNPs -- 6.4 -- Mode of action -- 6.5 -- Factors influencing the synthesis of AgNPs -- 6.5.1 -- Effect of pH -- 6.5.2 -- Effect of temperature -- 6.5.3 -- Effect of culture medium composition -- 6.5.4 -- Effect of fungal biomass -- 6.5.5 -- Effect of concentration of silver nitrate -- 6.5.6 -- Effect of capping and stabilization of the NPs -- 6.6 -- Application of mycologically synthesized nanoparticles -- 6.6.1 -- Healthcare -- 6.6.2 -- Agriculture and pest control -- 6.6.3 -- Food preservation -- 6.6.4 -- Anticancer agent -- 6.6.5 -- Catalytic applications -- 6.7 -- Conclusions and future perspective -- References -- Chapter 7 -- Mycosynthesis of gold nanoparticles: mechanisms and applications -- 7.1 -- Introduction -- 7.2 -- Mycosynthesis approach on metal nanoparticles -- 7.3 -- Mechanism of mycosynthesis of AuNPs -- 7.3.1 -- Intracellular Au reduction -- 7.3.2 -- Extracellular Au reduction -- 7.3.3 -- Capping -- 7.4 -- Physicochemical properties of AuNPs -- 7.4.1 -- Physical properties of AuNPs -- 7.4.2 -- Conjugation strategies -- 7.4.3 -- Advantages of the mycosynthesis approach -- 7.5 -- Application of AuNPs -- 7.5.1 -- Target drug delivery -- 7.5.2 -- Biosensors -- 7.5.3 Biomarkers -- 7.5.4 Cosmetic -- 7.6 -- Design of a bioreactor for AuNPs synthesis -- 7.7 -- Conclusions and future perspectives -- Acknowledgments -- References -- Chapter 8 -- Genetically modified microbes for nanobiotechnology.
|
505 |
8 |
|
|a 8.1 -- Introduction -- 8.2 -- Biological synthesis of nanoparticles -- 8.2.1 -- Metallic nanoparticles -- 8.2.2 -- Oxide nanoparticles -- 8.2.3 -- Sulfide nanoparticles -- 8.3 -- Genetically engineered microorganisms for the production of nanoparticles -- 8.4 -- Conclusions and future perspectives -- References -- Chapter 9 -- Viruses and nanotechnology -- 9.1 -- Introduction -- 9.2 -- Virus-mediated nanoparticle synthesis -- 9.2.1 -- Tobacco mosaic virus -- 9.2.2 -- M13 bacteriophage -- 9.2.3 -- Squash leaf curl China virus -- 9.2.4 -- Engineered P22 virus -- 9.2.5 -- Cowpea chlorotic mottle virus -- 9.3 -- Applications -- 9.4 -- Conclusions and future perspectives -- Acknowledgments -- References -- Chapter 10 -- Algae-assisted synthesis of nanoparticles -- 10.1 -- Introduction -- 10.2 -- Current scenario of algae-assisted nanoparticle synthesis and applications -- 10.2.1 Blue-green algae -- 10.2.2 -- Green algae -- 10.2.3 -- Red algae -- 10.2.4 -- Brown algae -- 10.3 -- Conclusions and future perspectives -- Acknowledgment -- References -- Chapter 11 -- Phytogenic synthesis of silver nanoparticles: mechanisms and applications -- 11.1 -- Introduction -- 11.2 -- Recent methods of AgNPs synthesis -- 11.2.1 -- Chemical methods for AgNPs synthesis -- 11.2.2 -- Biological methods for AgNPs synthesis -- 11.2.3 -- Bacterial cell-mediated synthesis (bacteriogenic synthesis) -- 11.2.4 -- Fungal cell-mediated synthesis (mycogenic synthesis) -- 11.2.5 -- Plant-mediated synthesis (phytogenic synthesis) -- 11.3 -- Mechanism of synthesis (mechanistic approach) -- 11.4 -- Plant extract-mediated synthesis of AgNPs -- 11.5 -- Gum-resin-mediated synthesis -- 11.6 -- Mechanism of antimicrobial action of AgNPs -- 11.7 -- Applications of AgNPs -- 11.7.1 -- Antibacterial agent -- 11.7.2 -- Antifungal agent -- 11.7.3 -- Antiviral agent -- 11.7.4 -- Antiinflammatory agent -- 11.7.5 -- AgNP as therapeutics.
|
505 |
8 |
|
|a 11.7.6 -- AgNPs as nanobiosensor.
|
650 |
|
0 |
|a Nanobiotechnology.
|
650 |
|
0 |
|a Nanostructured materials
|x Synthesis.
|
650 |
|
6 |
|a Nanobiotechnologie.
|0 (CaQQLa)000286131
|
650 |
|
6 |
|a Nanomat�eriaux
|0 (CaQQLa)201-0258061
|x Synth�ese.
|0 (CaQQLa)201-0377483
|
650 |
|
7 |
|a Nanobiotechnology
|2 fast
|0 (OCoLC)fst01894713
|
700 |
1 |
|
|a Ghosh, Sougata.
|
700 |
1 |
|
|a Webster, Thomas J.
|
776 |
0 |
8 |
|i Print version:
|z 0128228784
|z 9780128228784
|w (OCoLC)1199586138
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128228784
|z Texto completo
|