Cargando…

Renewable energy conversion systems /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kamran, Muhammad
Otros Autores: Fazal, Muhammad Rayyan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Renewable Energy Conversion Systems
  • Copyright Page
  • Dedication
  • Contents
  • 1 Fundamentals of renewable energy systems
  • 1.1 Introduction
  • 1.1.1 Why renewables
  • 1.1.2 Types of energy
  • 1.1.3 Conventional and renewable energy
  • 1.1.4 SWOT analysis of the renewable energy
  • 1.1.4.1 Strength
  • 1.1.4.2 Weakness
  • 1.1.4.3 Opportunities
  • 1.1.4.4 Threats
  • 1.1.5 Global warming and climate change
  • 1.1.6 World energy transformation by 2050
  • 1.1.7 Prospects of renewable energy in the world
  • 1.1.7.1 Solar energy
  • 1.1.7.2 Wind energy
  • 1.1.7.3 Hydropower
  • 1.1.7.4 Bioenergy
  • 1.1.7.5 Geothermal
  • 1.1.8 The structure of the book
  • References
  • 2 Thermodynamics for renewable energy systems
  • 2.1 Introduction
  • 2.2 Thermodynamic system
  • 2.2.1 Open system
  • 2.2.2 Closed system
  • 2.2.3 Isolated system
  • 2.3 Heat capacity
  • 2.3.1 Heat capacity at constant volume (CV)
  • 2.3.2 Heat capacity at constant pressure (CP)
  • 2.3.3 Mayer's equation
  • 2.4 Phase change and latent heat
  • 2.4.1 Latent heat of fusion
  • 2.4.2 Latent heat of evaporation
  • 2.5 Zeroth law of thermodynamics
  • 2.6 The first law of thermodynamics
  • 2.6.1 Isothermal process
  • 2.6.2 Isobaric process
  • 2.6.3 Isochoric process
  • 2.6.4 Adiabatic process
  • 2.7 The second law of thermodynamics
  • 2.7.1 Kelvin-Planck statement
  • 2.7.2 Clausius statement
  • 2.8 Third law of thermodynamics
  • 2.9 Thermodynamic cycles
  • 2.9.1 Solar thermal Brayton cycle (GAS)
  • 2.9.2 Solar thermal organic Rankine cycle (STEAM)
  • 2.9.3 Solar combined power cycle
  • Problems
  • References
  • 3 Power electronics for renewable energy systems
  • 3.1 Introduction
  • 3.2 Solid-state devices
  • 3.2.1 Silicon controlled rectifier (Thyristor)
  • 3.2.2 Gate turn-off thyristor
  • 3.2.3 Silicon controlled switch
  • 3.2.4 DIAC
  • 3.2.5 TRIAC.
  • 3.3 Rectifiers (AC-DC converters)
  • 3.3.1 Half-wave uncontrolled rectifier with resistive load
  • 3.3.2 Half-wave uncontrolled rectifier with inductive load
  • 3.3.3 Half-wave uncontrolled rectifier with inductive load and freewheeling diode
  • 3.3.4 Half-wave controlled rectifier with resistive load
  • 3.3.5 Half-wave controlled rectifier with an inductive load
  • 3.3.6 Half-wave controlled rectifier with inductive load and a freewheeling diode
  • 3.4 Converters (DC-DC converters)
  • 3.4.1 Buck converters
  • 3.4.2 Boost converters
  • 3.4.3 Buck-Boost converters
  • 3.4.4 Cuk converters
  • 3.5 Inverters (DC-AC inverters)
  • 3.5.1 H-Bridge inverter
  • 3.5.2 Multilevel inverter
  • 3.5.2.1 Diode clamped multilevel inverters
  • 3.5.2.2 Cascaded H-Bridge multilevel inverters
  • 3.5.2.3 Flying capacitor multilevel inverters
  • 3.6 Cycloconverters (AC-AC converters)
  • Problems
  • References
  • 4 Solar energy
  • 4.1 Introduction
  • 4.2 Solar thermal
  • 4.2.1 Solar parabolic trough
  • 4.2.2 Solar tower
  • 4.2.3 Solar parabolic dish
  • 4.2.4 Solar cooker
  • 4.2.5 Solar water heater
  • 4.2.6 Solar dryer
  • 4.3 Solar photovoltaic
  • 4.3.1 Modeling of PV cell
  • 4.3.1.1 Photocurrent
  • 4.3.1.2 Forward-biased diode
  • 4.3.1.3 Series resistance
  • 4.3.1.4 Shunt resistance
  • 4.3.1.5 Open-circuit voltage
  • 4.3.1.6 Short-circuit current
  • 4.3.1.7 The efficiency of a solar cell
  • 4.3.1.8 Fill factor
  • 4.4 Effect of temperature on solar cell
  • 4.5 Effect of irradiance on solar cell
  • 4.6 Series and parallel connection of solar cells
  • 4.7 Solar tracker
  • 4.7.1 Single-axis solar tracker
  • 4.7.2 Dual-axis solar tracker
  • 4.8 Maximum power point tracker
  • 4.8.1 Perturb and observe
  • 4.8.2 Incremental conductance
  • 4.9 Off-grid PV system
  • 4.10 Grid-connected PV system
  • 4.11 Hybrid PV systems
  • 4.11.1 Series hybrid energy system.
  • 4.11.2 Parallel hybrid energy system
  • 4.11.3 Switched hybrid energy system
  • 4.12 Distributed generation
  • 4.13 Optimization of hybrid renewable energy system
  • 4.13.1 HOMER pro
  • 4.13.2 iHOGA
  • 4.13.3 Hybrid2
  • 4.13.4 RETScreen
  • 4.13.5 TRNSYS
  • 4.14 Optimization of a hybrid energy system in HOMER: a case study
  • 4.14.1 Load assessment
  • 4.14.2 Resource assessment
  • 4.14.2.1 Solar photovoltaic
  • 4.14.2.2 Wind power
  • 4.14.2.3 Hydro energy
  • 4.14.3 Optimization results
  • References
  • 5 Wind energy
  • 5.1 Introduction
  • 5.2 Wind energy fundamentals
  • 5.2.1 Types of winds: meteorology
  • 5.2.2 Capturing the wind: wind speed, energy, and power
  • 5.3 Potential and prediction of wind energy
  • 5.3.1 Wind assessment
  • 5.3.2 Turbine power assessment
  • 5.3.2.1 Betz law
  • 5.3.3 Estimating wind power
  • 5.3.4 Predicting wind energy
  • 5.4 Wind energy conversion systems
  • 5.4.1 Basic components of wind turbine
  • 5.4.1.1 Turbine
  • 5.4.1.2 Yaw control system
  • 5.4.1.3 The nacelle
  • 5.4.1.4 The tower
  • 5.4.1.5 Control mechanism
  • 5.4.2 Wind turbine classification
  • 5.4.2.1 Axis position-based classification
  • 5.4.2.2 Size-based classification
  • 5.4.2.3 Speed-based classification
  • Fixed-speed wind turbines
  • Variable-speed wind turbines
  • 5.4.2.4 Location-based classification
  • 5.4.3 Generator types
  • 5.4.3.1 Synchronous generators
  • 5.4.3.2 Induction generators
  • 5.4.4 Electrical systems in wind turbines
  • 5.4.5 Power electronics integration
  • 5.4.6 Economics
  • 5.5 Reliability science of wind turbines
  • 5.6 Energy storage options of wind turbines
  • 5.7 Application of wind turbines
  • References
  • 6 Hydro energy
  • 6.1 Introduction
  • 6.2 Basic components of the hydropower plant
  • 6.2.1 Dam
  • 6.2.2 Penstock
  • 6.2.3 Turbines
  • 6.2.3.1 Impulse turbines
  • 6.2.3.2 Reaction turbines
  • 6.2.3.3 Tailrace.
  • 6.2.3.4 Electric generators
  • 6.3 Small/micro hydropower
  • 6.4 Designing of the small/micro hydropower system
  • 6.4.1 Flow duration curve
  • 6.4.2 Weir and open channel
  • 6.4.3 Trash rack design
  • 6.4.4 Penstock design
  • 6.4.4.1 Penstock diameter
  • 6.4.4.2 Penstock thickness
  • 6.4.4.3 Penstock cross-sectional area
  • 6.4.4.4 Water velocity through the penstock
  • 6.4.5 Penstock losses
  • 6.4.5.1 Head friction losses
  • 6.4.5.2 Inlet losses
  • 6.4.5.3 Valve losses
  • 6.4.6 Hydraulic power
  • 6.4.7 Turbine power
  • 6.4.8 Turbine speed
  • 6.4.9 Specific speed
  • 6.4.10 Turbine selection
  • 6.5 SWOT analysis of hydropower
  • 6.5.1 Strengths
  • 6.5.2 Weaknesses
  • 6.5.3 Opportunities
  • 6.5.4 Threats
  • References
  • 7 Fuel cell
  • 7.1 Introduction
  • 7.2 Working principle of a fuel cell
  • 7.3 Maximum efficiency of a fuel cell
  • 7.3.1 Enthalpy of a reaction
  • 7.3.2 The entropy of a reaction
  • 7.3.3 Gibbs free energy
  • 7.3.4 The efficiency of a fuel cell
  • 7.4 Fuel cell potential
  • 7.4.1 At anode
  • 7.4.2 At cathode
  • 7.5 Terminal voltage of the fuel cell
  • 7.5.1 Activation losses
  • 7.5.2 Concentration losses
  • 7.5.3 Ohmic losses
  • 7.6 Equivalent circuit model of the fuel cell
  • 7.7 Types of fuel cell
  • 7.7.1 Direct methanol fuel cell
  • 7.7.2 Phosphoric acid fuel cell
  • 7.7.3 Alkaline fuel cell
  • 7.7.4 Molten carbonate fuel cell
  • 7.7.4.1 Solid oxide fuel cell
  • 8 Bioenergy
  • 8.1 Introduction
  • 8.2 Biomass
  • 8.2.1 Palletization
  • 8.3 Biogas
  • 8.3.1 Anaerobic digestion process
  • 8.3.1.1 Hydrolysis
  • 8.3.1.2 Acidogenesis
  • 8.3.1.3 Acetogenesis
  • 8.3.1.4 Methanogenesis
  • 8.4 Biodiesel
  • 8.4.1 Physical characteristics of biodiesel
  • 8.4.1.1 Flashpoint
  • 8.4.1.2 Boiling point
  • 8.4.1.3 Cloud point
  • 8.4.1.4 Pour point
  • 8.4.1.5 Calorific value
  • 8.5 Hydrogen production
  • 8.5.1 Biological processes.
  • 8.5.1.1 Biophotolysis
  • 8.5.1.2 Dark fermentation
  • 8.5.1.3 Photofermentation
  • 8.5.2 Thermochemical process
  • 8.5.2.1 Pyrolysis
  • 8.5.2.2 Gasification
  • 8.5.3 Water-splitting
  • 8.5.3.1 Electrolysis
  • 8.5.3.2 Thermolysis
  • 8.5.3.3 Photolysis
  • 8.6 Economic considerations
  • 8.7 Conclusion
  • References
  • 9 Geothermal energy
  • 9.1 Introduction
  • 9.2 Geothermal resources
  • 9.3 Geothermal energy conversion mechanism
  • 9.3.1 Dry steam power plants
  • 9.3.2 Flash steam power plants
  • 9.3.3 Binary cycle power plants
  • 9.3.4 Geothermal combined cycle power plants
  • 9.4 Use of geothermal energy
  • 9.4.1 Indirect uses of geothermal energy
  • 9.4.2 Direct uses of geothermal energy
  • 9.5 Environmental effects
  • References
  • Index
  • Back Cover.