|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1251764658 |
003 |
OCoLC |
005 |
20231120010543.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210519s2021 enk o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d UIU
|d OCLCO
|d UKAHL
|d OCLCF
|d UKMGB
|d OCLCQ
|d OCLCO
|d N$T
|d K6U
|d SFB
|d OCLCQ
|
015 |
|
|
|a GBC143781
|2 bnb
|
016 |
7 |
|
|a 020135644
|2 Uk
|
020 |
|
|
|a 9780128235980
|q (electronic bk.)
|
020 |
|
|
|a 0128235985
|q (electronic bk.)
|
020 |
|
|
|z 9780128235386
|
035 |
|
|
|a (OCoLC)1251764658
|
050 |
|
4 |
|a TJ808
|
082 |
0 |
4 |
|a 621.042
|2 23
|
100 |
1 |
|
|a Kamran, Muhammad.
|
245 |
1 |
0 |
|a Renewable energy conversion systems /
|c Muhammad Kamran and Muhammad Rayyan Fazal.
|
260 |
|
|
|a [Place of publication not identified] :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Front Cover -- Renewable Energy Conversion Systems -- Copyright Page -- Dedication -- Contents -- 1 Fundamentals of renewable energy systems -- 1.1 Introduction -- 1.1.1 Why renewables -- 1.1.2 Types of energy -- 1.1.3 Conventional and renewable energy -- 1.1.4 SWOT analysis of the renewable energy -- 1.1.4.1 Strength -- 1.1.4.2 Weakness -- 1.1.4.3 Opportunities -- 1.1.4.4 Threats -- 1.1.5 Global warming and climate change -- 1.1.6 World energy transformation by 2050 -- 1.1.7 Prospects of renewable energy in the world -- 1.1.7.1 Solar energy -- 1.1.7.2 Wind energy -- 1.1.7.3 Hydropower -- 1.1.7.4 Bioenergy -- 1.1.7.5 Geothermal -- 1.1.8 The structure of the book -- References -- 2 Thermodynamics for renewable energy systems -- 2.1 Introduction -- 2.2 Thermodynamic system -- 2.2.1 Open system -- 2.2.2 Closed system -- 2.2.3 Isolated system -- 2.3 Heat capacity -- 2.3.1 Heat capacity at constant volume (CV) -- 2.3.2 Heat capacity at constant pressure (CP) -- 2.3.3 Mayer's equation -- 2.4 Phase change and latent heat -- 2.4.1 Latent heat of fusion -- 2.4.2 Latent heat of evaporation -- 2.5 Zeroth law of thermodynamics -- 2.6 The first law of thermodynamics -- 2.6.1 Isothermal process -- 2.6.2 Isobaric process -- 2.6.3 Isochoric process -- 2.6.4 Adiabatic process -- 2.7 The second law of thermodynamics -- 2.7.1 Kelvin-Planck statement -- 2.7.2 Clausius statement -- 2.8 Third law of thermodynamics -- 2.9 Thermodynamic cycles -- 2.9.1 Solar thermal Brayton cycle (GAS) -- 2.9.2 Solar thermal organic Rankine cycle (STEAM) -- 2.9.3 Solar combined power cycle -- Problems -- References -- 3 Power electronics for renewable energy systems -- 3.1 Introduction -- 3.2 Solid-state devices -- 3.2.1 Silicon controlled rectifier (Thyristor) -- 3.2.2 Gate turn-off thyristor -- 3.2.3 Silicon controlled switch -- 3.2.4 DIAC -- 3.2.5 TRIAC.
|
505 |
8 |
|
|a 3.3 Rectifiers (AC-DC converters) -- 3.3.1 Half-wave uncontrolled rectifier with resistive load -- 3.3.2 Half-wave uncontrolled rectifier with inductive load -- 3.3.3 Half-wave uncontrolled rectifier with inductive load and freewheeling diode -- 3.3.4 Half-wave controlled rectifier with resistive load -- 3.3.5 Half-wave controlled rectifier with an inductive load -- 3.3.6 Half-wave controlled rectifier with inductive load and a freewheeling diode -- 3.4 Converters (DC-DC converters) -- 3.4.1 Buck converters -- 3.4.2 Boost converters -- 3.4.3 Buck-Boost converters -- 3.4.4 Cuk converters -- 3.5 Inverters (DC-AC inverters) -- 3.5.1 H-Bridge inverter -- 3.5.2 Multilevel inverter -- 3.5.2.1 Diode clamped multilevel inverters -- 3.5.2.2 Cascaded H-Bridge multilevel inverters -- 3.5.2.3 Flying capacitor multilevel inverters -- 3.6 Cycloconverters (AC-AC converters) -- Problems -- References -- 4 Solar energy -- 4.1 Introduction -- 4.2 Solar thermal -- 4.2.1 Solar parabolic trough -- 4.2.2 Solar tower -- 4.2.3 Solar parabolic dish -- 4.2.4 Solar cooker -- 4.2.5 Solar water heater -- 4.2.6 Solar dryer -- 4.3 Solar photovoltaic -- 4.3.1 Modeling of PV cell -- 4.3.1.1 Photocurrent -- 4.3.1.2 Forward-biased diode -- 4.3.1.3 Series resistance -- 4.3.1.4 Shunt resistance -- 4.3.1.5 Open-circuit voltage -- 4.3.1.6 Short-circuit current -- 4.3.1.7 The efficiency of a solar cell -- 4.3.1.8 Fill factor -- 4.4 Effect of temperature on solar cell -- 4.5 Effect of irradiance on solar cell -- 4.6 Series and parallel connection of solar cells -- 4.7 Solar tracker -- 4.7.1 Single-axis solar tracker -- 4.7.2 Dual-axis solar tracker -- 4.8 Maximum power point tracker -- 4.8.1 Perturb and observe -- 4.8.2 Incremental conductance -- 4.9 Off-grid PV system -- 4.10 Grid-connected PV system -- 4.11 Hybrid PV systems -- 4.11.1 Series hybrid energy system.
|
505 |
8 |
|
|a 4.11.2 Parallel hybrid energy system -- 4.11.3 Switched hybrid energy system -- 4.12 Distributed generation -- 4.13 Optimization of hybrid renewable energy system -- 4.13.1 HOMER pro -- 4.13.2 iHOGA -- 4.13.3 Hybrid2 -- 4.13.4 RETScreen -- 4.13.5 TRNSYS -- 4.14 Optimization of a hybrid energy system in HOMER: a case study -- 4.14.1 Load assessment -- 4.14.2 Resource assessment -- 4.14.2.1 Solar photovoltaic -- 4.14.2.2 Wind power -- 4.14.2.3 Hydro energy -- 4.14.3 Optimization results -- References -- 5 Wind energy -- 5.1 Introduction -- 5.2 Wind energy fundamentals -- 5.2.1 Types of winds: meteorology -- 5.2.2 Capturing the wind: wind speed, energy, and power -- 5.3 Potential and prediction of wind energy -- 5.3.1 Wind assessment -- 5.3.2 Turbine power assessment -- 5.3.2.1 Betz law -- 5.3.3 Estimating wind power -- 5.3.4 Predicting wind energy -- 5.4 Wind energy conversion systems -- 5.4.1 Basic components of wind turbine -- 5.4.1.1 Turbine -- 5.4.1.2 Yaw control system -- 5.4.1.3 The nacelle -- 5.4.1.4 The tower -- 5.4.1.5 Control mechanism -- 5.4.2 Wind turbine classification -- 5.4.2.1 Axis position-based classification -- 5.4.2.2 Size-based classification -- 5.4.2.3 Speed-based classification -- Fixed-speed wind turbines -- Variable-speed wind turbines -- 5.4.2.4 Location-based classification -- 5.4.3 Generator types -- 5.4.3.1 Synchronous generators -- 5.4.3.2 Induction generators -- 5.4.4 Electrical systems in wind turbines -- 5.4.5 Power electronics integration -- 5.4.6 Economics -- 5.5 Reliability science of wind turbines -- 5.6 Energy storage options of wind turbines -- 5.7 Application of wind turbines -- References -- 6 Hydro energy -- 6.1 Introduction -- 6.2 Basic components of the hydropower plant -- 6.2.1 Dam -- 6.2.2 Penstock -- 6.2.3 Turbines -- 6.2.3.1 Impulse turbines -- 6.2.3.2 Reaction turbines -- 6.2.3.3 Tailrace.
|
505 |
8 |
|
|a 6.2.3.4 Electric generators -- 6.3 Small/micro hydropower -- 6.4 Designing of the small/micro hydropower system -- 6.4.1 Flow duration curve -- 6.4.2 Weir and open channel -- 6.4.3 Trash rack design -- 6.4.4 Penstock design -- 6.4.4.1 Penstock diameter -- 6.4.4.2 Penstock thickness -- 6.4.4.3 Penstock cross-sectional area -- 6.4.4.4 Water velocity through the penstock -- 6.4.5 Penstock losses -- 6.4.5.1 Head friction losses -- 6.4.5.2 Inlet losses -- 6.4.5.3 Valve losses -- 6.4.6 Hydraulic power -- 6.4.7 Turbine power -- 6.4.8 Turbine speed -- 6.4.9 Specific speed -- 6.4.10 Turbine selection -- 6.5 SWOT analysis of hydropower -- 6.5.1 Strengths -- 6.5.2 Weaknesses -- 6.5.3 Opportunities -- 6.5.4 Threats -- References -- 7 Fuel cell -- 7.1 Introduction -- 7.2 Working principle of a fuel cell -- 7.3 Maximum efficiency of a fuel cell -- 7.3.1 Enthalpy of a reaction -- 7.3.2 The entropy of a reaction -- 7.3.3 Gibbs free energy -- 7.3.4 The efficiency of a fuel cell -- 7.4 Fuel cell potential -- 7.4.1 At anode -- 7.4.2 At cathode -- 7.5 Terminal voltage of the fuel cell -- 7.5.1 Activation losses -- 7.5.2 Concentration losses -- 7.5.3 Ohmic losses -- 7.6 Equivalent circuit model of the fuel cell -- 7.7 Types of fuel cell -- 7.7.1 Direct methanol fuel cell -- 7.7.2 Phosphoric acid fuel cell -- 7.7.3 Alkaline fuel cell -- 7.7.4 Molten carbonate fuel cell -- 7.7.4.1 Solid oxide fuel cell -- 8 Bioenergy -- 8.1 Introduction -- 8.2 Biomass -- 8.2.1 Palletization -- 8.3 Biogas -- 8.3.1 Anaerobic digestion process -- 8.3.1.1 Hydrolysis -- 8.3.1.2 Acidogenesis -- 8.3.1.3 Acetogenesis -- 8.3.1.4 Methanogenesis -- 8.4 Biodiesel -- 8.4.1 Physical characteristics of biodiesel -- 8.4.1.1 Flashpoint -- 8.4.1.2 Boiling point -- 8.4.1.3 Cloud point -- 8.4.1.4 Pour point -- 8.4.1.5 Calorific value -- 8.5 Hydrogen production -- 8.5.1 Biological processes.
|
505 |
8 |
|
|a 8.5.1.1 Biophotolysis -- 8.5.1.2 Dark fermentation -- 8.5.1.3 Photofermentation -- 8.5.2 Thermochemical process -- 8.5.2.1 Pyrolysis -- 8.5.2.2 Gasification -- 8.5.3 Water-splitting -- 8.5.3.1 Electrolysis -- 8.5.3.2 Thermolysis -- 8.5.3.3 Photolysis -- 8.6 Economic considerations -- 8.7 Conclusion -- References -- 9 Geothermal energy -- 9.1 Introduction -- 9.2 Geothermal resources -- 9.3 Geothermal energy conversion mechanism -- 9.3.1 Dry steam power plants -- 9.3.2 Flash steam power plants -- 9.3.3 Binary cycle power plants -- 9.3.4 Geothermal combined cycle power plants -- 9.4 Use of geothermal energy -- 9.4.1 Indirect uses of geothermal energy -- 9.4.2 Direct uses of geothermal energy -- 9.5 Environmental effects -- References -- Index -- Back Cover.
|
650 |
|
0 |
|a Renewable energy sources.
|
650 |
|
2 |
|a Renewable Energy
|0 (DNLM)D059205
|
650 |
|
6 |
|a �Energies renouvelables.
|0 (CaQQLa)201-0018247
|
650 |
|
7 |
|a Renewable energy sources.
|2 fast
|0 (OCoLC)fst01094570
|
700 |
1 |
|
|a Fazal, Muhammad Rayyan.
|
776 |
0 |
8 |
|i Print version:
|a Kamran, Muhammad.
|t Renewable energy conversion systems.
|d [Place of publication not identified] : Academic Press, 2021
|z 0128235381
|z 9780128235386
|w (OCoLC)1190789141
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128235386
|z Texto completo
|