Cargando…

Advances in agronomy. Volume 167 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sparks, Donald L., 1953- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 4.3. C4 to C3 vegetation change
  • 4.4. Vegetation change involving CAM species
  • 5. Soil profile indicators of a presumed change in vegetation and/or climate
  • 5.1. Ecotone boundary shifts
  • 5.2. Changes in community composition
  • 5.2.1. Fire
  • 5.2.2. Domestic animal grazing
  • 5.2.3. Climate change
  • 6. Contribution of organic materials to the soil organic C pool
  • 6.1. Legume residues
  • 6.2. Animal dung
  • 6.3. Compost
  • 6.4. Animal excreta under grazing
  • 7. Relative contributions of C3 and C4 sources to diet
  • 7.1. Domestic and wild animals
  • 7.2. Insects
  • 7.3. Earthworms
  • 7.4. Nematodes
  • 8. Relative proportions of roots of mixed C3 and C4 species
  • 9. Relative contribution of two carbon sources to respiration
  • 9.1. Roots and soil
  • 9.2. Mixed C3 and C4 plants
  • 9.3. C3 and C4 animal excreta slurries and soil
  • 9.4. Two carbon substrates in a fungal culture medium
  • 9.5. Biochar and soil
  • 10. Conclusions
  • References
  • Further reading
  • Chapter Three: The effect of elemental sulfur fertilization on plant yields and soil properties
  • 1. Introduction
  • 2. Review of literature
  • 2.1. Properties and importance of sulfur
  • 2.2. Sulfur in nature
  • 2.3. Sulfur in the soil
  • 2.4. Transformation of elemental sulfur in the soil
  • 2.5. Sulfur in plants
  • 3. Research aims
  • 4. Materials and methods
  • 4.1. Incubation experiments
  • 4.2. Pot experiments
  • 4.3. Field trials
  • 4.3.1. Climatic conditions
  • 4.3.2. Plan of experiments
  • 4.4. Chemical analysis of soil and plants
  • 4.5. Statistical methods used to obtain the results
  • 5. Research results and discussion
  • 5.1. The release of sulphates(VI) from S in incubation experiments
  • 5.1.1. The oxidation rate of S and content of sulphates(VI)
  • 5.1.2. Soil pH in incubation experiments.
  • 5.2. The degree of fragmentation of S as a conditional factor in its effectiveness
  • 5.2.1. The reaction of white mustard to elemental sulfur fertilization
  • 5.2.1.1. Yield
  • 5.2.1.2. The content and uptake of sulfur and the ratio of N:S
  • 5.2.1.3. Soil pH and sulfur content
  • 5.2.2. The response of spring wheat to elemental sulfur fertilization
  • 5.2.2.1. Spring wheat yields
  • 5.2.2.2. Content and update of sulfur and the N:S ratio
  • 5.2.2.3. Soil pH and sulfur content
  • 5.2.3. Response of spring rape to elemental sulfur fertilization
  • 5.2.3.1. Spring rape yields
  • 5.2.3.2. Content and uptake of sulfur and the N:S ratio in spring rape
  • 5.2.3.3. Soil pH and sulfur content
  • 5.2.4. Response of maize to elemental sulfur fertilization
  • 5.2.4.1. Maize yields
  • 5.2.4.2. Content and uptake of sulfur and the N:S ratio
  • 5.2.4.3. Soil pH and sulfur content in the soil
  • 5.3. Determining the optimal dose of sulfur for winter rape and winter wheat
  • 5.3.1. Cultivated plant yields
  • 5.3.2. Content and uptake of sulfur and the N:S ratio in cultivated plants
  • 5.3.3. Content of glucosinolates in rape seeds
  • 5.3.4. Proportion of fatty acids in rape seed oil
  • 5.3.5. Soil pH and the content of total sulfur and sulphate(VI) in the soil
  • 5.3.6. The correlation between the selected parameters of the field experiments
  • 5.3.7. Sulfur balance in cultivated plants
  • 6. Conclusions
  • References
  • Chapter Four: Environmentally friendly agronomically superior alternatives to chemically processed phosphate fertilizers: ...
  • 1. Introduction
  • 2. Chemically processed fertilizers
  • 2.1. Production
  • 2.1.1. Environmental impact
  • 2.1.2. Resource and energy efficiency
  • 2.2. Chemically processed fertilizers usage
  • 2.2.1. Environmental impact
  • 2.2.2. Efficiency of soluble phosphate fertilizers
  • 3. PR/S/Acidithiobacillus sp. combinations.
  • 3.1. Direct application of PR
  • 3.2. Studies on PR/S fertilizers
  • 3.2.1. Early studies
  • 3.2.2. Studies since 1970
  • 4. Biochemistry of PR acidulation in PR/S
  • 5. Source of Acidithiobacilli sp. bacteria
  • 5.1. Option I. Adding Acidithiobacillus sp. culture to PR/S
  • 5.2. Option II. Bacterial culture applied to the soil
  • 5.3. Option III. Relying on soil resident soil population
  • 6. Factors that affect the dissolution of PR in PR/S
  • 6.1. Rate of oxidation of S
  • 6.2. Reactivity and grade of PRs
  • 7. Agronomic evaluation of PR/S/Cult combinations
  • 7.1. Data source
  • 7.2. Results
  • 7.3. Meta-analysis-Greenhouse studies
  • 7.4. Meta-analysis permanent pastures-Field studies
  • 7.5. Meta-analysis results-Seasonal crops
  • 7.6. Discussion
  • 8. Use of low-grade PRs
  • 9. The nature of P release from PR/S/Cult
  • 10. Use of PR/S/Cult for organic farms
  • 11. PR/S/Cult as a sulfur fertilizer
  • 12. Industrial-scale production of PR/S/Cult
  • 13. Production benefits of PR/S/Cult fertilizers
  • 13.1. Economic benefits
  • 13.2. Environmental advantages
  • Acknowledgments
  • Appendix. Model search and use in meta-analysis of fertilizer trials
  • Data
  • Model search
  • References
  • Chapter Five: Automation in drip irrigation for enhancing water use efficiency in cereal systems of South Asia: Status an ...
  • 1. Introduction
  • 2. Water in agriculture: Present and future scenarios
  • 2.1. Current situation and challenges
  • 2.2. Future trends in water use
  • 3. Current status of water management in agriculture: Tools and techniques
  • 3.1. Micro-irrigation in agriculture: Progress and prospects
  • 3.1.1. Sprinkler irrigation
  • 3.1.2. Surface drip irrigation
  • 3.1.3. Sub-surface drip irrigation
  • 4. Scheduling for drip irrigation systems
  • 4.1. Climate-based approaches
  • 4.2. Evaporation-based approach
  • 4.3. Soil-based approach.
  • 4.4. Plant-based approach
  • 4.5. Deficit-irrigation approach
  • 5. Designing automated drip irrigation systems
  • 5.1. Sensors and methods
  • 5.1.1. Communication techniques
  • 5.1.1.1. Wireless sensor networks (WSNs)
  • 5.1.1.2. Internet of Things (IoT) for precision irrigation systems
  • 5.1.1.3. Global system for mobile communications (GSM)-based wireless network for automated irrigation systems
  • 5.2. Case studies of different irrigation automation schemes
  • 5.2.1. Tensiometer and capacitance-based automation
  • 5.2.2. Smart phone and solar power-based irrigation automation
  • 5.2.3. Combination of soil and weather sensors-based automation
  • 5.3. Impact of irrigation automation on crop productivity and water saving
  • 6. Artificial intelligence-based automated irrigation system
  • 7. Examples of automated drip irrigation systems in cereal systems of South Asia
  • 7.1. Plot-scale evidence on automated drip irrigation in the rice-wheat system
  • 7.2. Landscape-scale evidence on automated drip irrigation systems
  • 8. Conclusions
  • 9. The way forward
  • Acknowledgments
  • References
  • Index.