|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1249448746 |
003 |
OCoLC |
005 |
20231120010541.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210503s2021 ne o 000 0 eng d |
040 |
|
|
|a UIU
|b eng
|e rda
|e pn
|c UIU
|d OCLCO
|d OPELS
|d OCLCF
|d OCLCQ
|d N$T
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 0323850758
|q (ePub ebook)
|
020 |
|
|
|a 9780323850759
|q (electronic bk.)
|
020 |
|
|
|z 9780128245880
|q (hbk.)
|
020 |
|
|
|z 0128245883
|q (hbk.)
|
035 |
|
|
|a (OCoLC)1249448746
|
050 |
|
4 |
|a SB91
|
082 |
0 |
4 |
|a 630
|2 23
|
245 |
0 |
0 |
|a Advances in agronomy.
|n Volume 167 /
|c edited by Donald L. Sparks.
|
264 |
|
1 |
|a Amsterdam :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
8 |
|
|a 4.3. C4 to C3 vegetation change -- 4.4. Vegetation change involving CAM species -- 5. Soil profile indicators of a presumed change in vegetation and/or climate -- 5.1. Ecotone boundary shifts -- 5.2. Changes in community composition -- 5.2.1. Fire -- 5.2.2. Domestic animal grazing -- 5.2.3. Climate change -- 6. Contribution of organic materials to the soil organic C pool -- 6.1. Legume residues -- 6.2. Animal dung -- 6.3. Compost -- 6.4. Animal excreta under grazing -- 7. Relative contributions of C3 and C4 sources to diet -- 7.1. Domestic and wild animals -- 7.2. Insects -- 7.3. Earthworms -- 7.4. Nematodes -- 8. Relative proportions of roots of mixed C3 and C4 species -- 9. Relative contribution of two carbon sources to respiration -- 9.1. Roots and soil -- 9.2. Mixed C3 and C4 plants -- 9.3. C3 and C4 animal excreta slurries and soil -- 9.4. Two carbon substrates in a fungal culture medium -- 9.5. Biochar and soil -- 10. Conclusions -- References -- Further reading -- Chapter Three: The effect of elemental sulfur fertilization on plant yields and soil properties -- 1. Introduction -- 2. Review of literature -- 2.1. Properties and importance of sulfur -- 2.2. Sulfur in nature -- 2.3. Sulfur in the soil -- 2.4. Transformation of elemental sulfur in the soil -- 2.5. Sulfur in plants -- 3. Research aims -- 4. Materials and methods -- 4.1. Incubation experiments -- 4.2. Pot experiments -- 4.3. Field trials -- 4.3.1. Climatic conditions -- 4.3.2. Plan of experiments -- 4.4. Chemical analysis of soil and plants -- 4.5. Statistical methods used to obtain the results -- 5. Research results and discussion -- 5.1. The release of sulphates(VI) from S in incubation experiments -- 5.1.1. The oxidation rate of S and content of sulphates(VI) -- 5.1.2. Soil pH in incubation experiments.
|
505 |
8 |
|
|a 5.2. The degree of fragmentation of S as a conditional factor in its effectiveness -- 5.2.1. The reaction of white mustard to elemental sulfur fertilization -- 5.2.1.1. Yield -- 5.2.1.2. The content and uptake of sulfur and the ratio of N:S -- 5.2.1.3. Soil pH and sulfur content -- 5.2.2. The response of spring wheat to elemental sulfur fertilization -- 5.2.2.1. Spring wheat yields -- 5.2.2.2. Content and update of sulfur and the N:S ratio -- 5.2.2.3. Soil pH and sulfur content -- 5.2.3. Response of spring rape to elemental sulfur fertilization -- 5.2.3.1. Spring rape yields -- 5.2.3.2. Content and uptake of sulfur and the N:S ratio in spring rape -- 5.2.3.3. Soil pH and sulfur content -- 5.2.4. Response of maize to elemental sulfur fertilization -- 5.2.4.1. Maize yields -- 5.2.4.2. Content and uptake of sulfur and the N:S ratio -- 5.2.4.3. Soil pH and sulfur content in the soil -- 5.3. Determining the optimal dose of sulfur for winter rape and winter wheat -- 5.3.1. Cultivated plant yields -- 5.3.2. Content and uptake of sulfur and the N:S ratio in cultivated plants -- 5.3.3. Content of glucosinolates in rape seeds -- 5.3.4. Proportion of fatty acids in rape seed oil -- 5.3.5. Soil pH and the content of total sulfur and sulphate(VI) in the soil -- 5.3.6. The correlation between the selected parameters of the field experiments -- 5.3.7. Sulfur balance in cultivated plants -- 6. Conclusions -- References -- Chapter Four: Environmentally friendly agronomically superior alternatives to chemically processed phosphate fertilizers: ... -- 1. Introduction -- 2. Chemically processed fertilizers -- 2.1. Production -- 2.1.1. Environmental impact -- 2.1.2. Resource and energy efficiency -- 2.2. Chemically processed fertilizers usage -- 2.2.1. Environmental impact -- 2.2.2. Efficiency of soluble phosphate fertilizers -- 3. PR/S/Acidithiobacillus sp. combinations.
|
505 |
8 |
|
|a 3.1. Direct application of PR -- 3.2. Studies on PR/S fertilizers -- 3.2.1. Early studies -- 3.2.2. Studies since 1970 -- 4. Biochemistry of PR acidulation in PR/S -- 5. Source of Acidithiobacilli sp. bacteria -- 5.1. Option I. Adding Acidithiobacillus sp. culture to PR/S -- 5.2. Option II. Bacterial culture applied to the soil -- 5.3. Option III. Relying on soil resident soil population -- 6. Factors that affect the dissolution of PR in PR/S -- 6.1. Rate of oxidation of S -- 6.2. Reactivity and grade of PRs -- 7. Agronomic evaluation of PR/S/Cult combinations -- 7.1. Data source -- 7.2. Results -- 7.3. Meta-analysis-Greenhouse studies -- 7.4. Meta-analysis permanent pastures-Field studies -- 7.5. Meta-analysis results-Seasonal crops -- 7.6. Discussion -- 8. Use of low-grade PRs -- 9. The nature of P release from PR/S/Cult -- 10. Use of PR/S/Cult for organic farms -- 11. PR/S/Cult as a sulfur fertilizer -- 12. Industrial-scale production of PR/S/Cult -- 13. Production benefits of PR/S/Cult fertilizers -- 13.1. Economic benefits -- 13.2. Environmental advantages -- Acknowledgments -- Appendix. Model search and use in meta-analysis of fertilizer trials -- Data -- Model search -- References -- Chapter Five: Automation in drip irrigation for enhancing water use efficiency in cereal systems of South Asia: Status an ... -- 1. Introduction -- 2. Water in agriculture: Present and future scenarios -- 2.1. Current situation and challenges -- 2.2. Future trends in water use -- 3. Current status of water management in agriculture: Tools and techniques -- 3.1. Micro-irrigation in agriculture: Progress and prospects -- 3.1.1. Sprinkler irrigation -- 3.1.2. Surface drip irrigation -- 3.1.3. Sub-surface drip irrigation -- 4. Scheduling for drip irrigation systems -- 4.1. Climate-based approaches -- 4.2. Evaporation-based approach -- 4.3. Soil-based approach.
|
505 |
8 |
|
|a 4.4. Plant-based approach -- 4.5. Deficit-irrigation approach -- 5. Designing automated drip irrigation systems -- 5.1. Sensors and methods -- 5.1.1. Communication techniques -- 5.1.1.1. Wireless sensor networks (WSNs) -- 5.1.1.2. Internet of Things (IoT) for precision irrigation systems -- 5.1.1.3. Global system for mobile communications (GSM)-based wireless network for automated irrigation systems -- 5.2. Case studies of different irrigation automation schemes -- 5.2.1. Tensiometer and capacitance-based automation -- 5.2.2. Smart phone and solar power-based irrigation automation -- 5.2.3. Combination of soil and weather sensors-based automation -- 5.3. Impact of irrigation automation on crop productivity and water saving -- 6. Artificial intelligence-based automated irrigation system -- 7. Examples of automated drip irrigation systems in cereal systems of South Asia -- 7.1. Plot-scale evidence on automated drip irrigation in the rice-wheat system -- 7.2. Landscape-scale evidence on automated drip irrigation systems -- 8. Conclusions -- 9. The way forward -- Acknowledgments -- References -- Index.
|
650 |
|
0 |
|a Agronomy.
|
650 |
|
6 |
|a Agronomie.
|0 (CaQQLa)201-0011037
|
650 |
|
7 |
|a agronomy.
|2 aat
|0 (CStmoGRI)aat300254393
|
650 |
|
7 |
|a Agronomy
|2 fast
|0 (OCoLC)fst00801886
|
700 |
1 |
|
|a Sparks, Donald L.,
|d 1953-
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Advances in agronomy. Volume 167
|z 9780128245880
|w (OCoLC)1246538497
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00652113/167
|z Texto completo
|