Applications of viscoelasticity : bituminous materials characterization and modeling /
Applications of Viscoelasticity: Bituminous Materials Characterization and Modeling starts with an introduction to the theory of viscoelasticity, emphasizing its importance to various applications in material characterization and modeling. It next looks at constitutive viscoelastic functions, outlin...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[S.l.] :
Elsevier,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Applications of Viscoelasticity
- Copyright Page
- Dedication
- Contents
- Preface
- 1 Introduction to viscoelasticity
- 1.1 Introduction
- 1.2 Constitutive viscoelastic functions
- 1.3 Mechanical models of viscoelasticity
- 1.4 The correspondence principle
- 1.5 Time-temperature-loading rate superposition
- 1.6 Interconversion of constitutive viscoelastic functions
- 1.7 Application of viscoelasticity for experimental tests
- 1.8 Incremental form of viscoelastic relations
- References
- 2 Constitutive viscoelastic functions
- 2.1 Creep compliance
- 2.2 Relaxation modulus
- 2.3 Boltzmann's superposition principle
- 2.4 Response of viscoelastic material to harmonic loading
- References
- 3 Mechanical models of viscoelasticity
- 3.1 Introduction
- 3.2 Integer-order differential equations
- 3.2.1 The Maxwell model
- 3.2.2 The Kelvin-Voigt model
- 3.2.3 The Burgers model
- 3.2.4 The generalized Maxwell or Kelvin-Voigt model
- 3.2.5 General format of the constitutive equation
- 3.3 Fractional-order differential equation
- 3.3.1 Fractional derivatives
- 3.3.2 Simple fractional element
- 3.3.3 Generalized fractional viscoelastic model
- 3.3.4 General fractional viscoelastic modeling
- 3.3.5 Fractional viscoelastic models for bituminous materials
- 3.3.5.1 2S2P1D model
- 3.3.5.2 1S2P1D model
- 3.3.5.3 Huet-Sayegh model
- 3.3.5.4 Huet model
- 3.3.5.5 Comparing 2S2P1D, 1S2P1D, Huet-Sayegh, and Huet models
- References
- 4 Correspondence principle of viscoelasticity
- 4.1 Introduction
- 4.2 Theoretical background on the correspondence principle
- 4.3 Examples of using the correspondence principle
- 4.3.1 Viscoelastic three-point bending beam
- 4.3.2 Viscoelastic axially loaded bar
- 4.3.3 Viscoelastic beams for conditions other than bending
- 4.3.3.1 Uniformly distributed loading
- 4.3.3.2 Arbitrary distributed loading (function of distance and time)
- 4.3.4 Linear viscoelastic fracture mechanics
- References
- 5 Time-temperature superposition
- 5.1 Introduction
- 5.2 Effect of temperature on viscoelastic properties
- 5.3 Time-temperature superposition principle to develop master curves
- 5.4 Shift functions
- 5.4.1 Williams-Landel-Ferry equation
- 5.4.2 Arrhenius activation energy equation
- 5.5 Mathematical development of the time-temperature superposition principle
- 5.6 Mathematical-based master curve construction methods
- 5.6.1 Sign control method
- 5.6.2 Chailleux's method
- 5.7 Constitutive equations with effective time
- References
- 6 Interconversion of constitutive viscoelastic functions
- 6.1 Introduction
- 6.2 Hopkins and Hamming's method
- 6.2.1 Interconverting relaxation modulus and creep compliance
- 6.2.2 Derivation of bulk modulus based on relaxation modulus and Poisson's ratio