Laser annealing processes in semiconductor technology : theory, modeling and applications in nanoelectronics /
Laser Annealing Processes in Semiconductor Technology: Theory, Modeling and Applications in Nanoelectronics synthesizes the scientific and technological advances of laser annealing processes for current and emerging nanotechnologies. The book provides an overview of the laser-matter interactions of...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Woodhead Publishing,
2021.
|
Colección: | Woodhead Publishing series in electronic and optical materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Laser Annealing Processes in Semiconductor Technology: Theory, Modeling, and Applications in Nanoelectronics
- Copyright
- Contents
- Contributors
- Preface
- Chapter 1: Historical evolution of pulsed laser annealing for semiconductor processing
- 1.1. Section 1: Introduction
- 1.2. Section 2: Excimer laser technology
- 1.2.1. Characteristics of the beam emitted by excimer lasers
- 1.2.2. Parameters that are relevant for the light-material interaction
- 1.2.3. Optics that can be used to shape the beam and prepare it for industrial applications
- 1.3. Section 3: Excimer laser annealing for low-temperature polycrystalline silicon technology
- 1.3.1. Excimer Laser process engineering
- 1.3.1.1. Trailing-/leading-edge scanning mode
- 1.3.1.2. Sequential lateral solidification
- 1.3.1.3. Two-pass excimer Laser process
- 1.3.1.4. Phase-modulated excimer laser annealing
- 1.3.1.5. Micro-Czochralski technique
- 1.3.2. Excimer laser-crystallized thin-film transistors
- 1.4. Section 4: Excimer laser annealing in MOS technology
- 1.4.1. Logic applications
- 1.4.2. Power MOS and RF/microwave applications
- 1.5. Conclusions
- References
- Chapter 2: Laser-matter interactions
- 2.1. Introduction
- 2.2. Absorption of electromagnetic radiation
- 2.3. Thermal effects of laser radiation
- 2.4. Differences across the electromagnetic spectrum
- 2.5. Diffusion model extension to millisecond regime
- 2.5.1. Thermal interaction
- 2.5.2. Diffusion simulation and activation kinetics
- 2.6. Concluding remarks
- References
- Chapter 3: Atomistic modeling of laser-related phenomena
- 3.1. Introduction
- 3.2. Atomistic simulation techniques
- 3.2.1. Ab initio
- 3.2.2. Tight binding
- 3.2.3. Classical molecular dynamics
- 3.2.4. Kinetic Monte Carlo
- 3.2.5. Multiscale modeling.
- 3.3. Laser annealing modeling from an atomistic perspective
- 3.3.1. Ab initio models
- 3.3.1.1. Finite temperature-density functional theory
- 3.3.1.2. Finite temperature-density functional perturbation theory
- 3.3.1.3. Time-dependent density functional theory
- 3.3.2. Tight binding models
- 3.3.2.1. Finite temperature tight binding simulations
- 3.3.2.2. Time-dependent tight binding simulations
- 3.3.3. Classical molecular dynamics models
- 3.3.3.1. Preassumed heating profiles
- 3.3.3.2. Two-temperature model molecular dynamics
- 3.3.3.3. Electronic-temperature-dependent interatomic potentials
- 3.4. Laser-related phenomena in semiconductors
- 3.4.1. Melting and regrowth
- 3.4.2. Dopant and defect kinetics
- 3.4.3. Dopant segregation
- 3.4.4. Anomalous generation of extended defects
- 3.5. Conclusions
- References
- Chapter 4: Laser annealing applications for semiconductor devices manufacturing
- 4.1. Introduction
- 4.2. Power devices
- 4.2.1. Si power devices
- 4.2.2. Wide bandgap material power devices
- 4.2.2.1. SiC annealing
- 4.2.2.2. GaN annealing
- 4.2.2.3. Ohmic contact formation
- 4.2.3. Conclusion
- 4.3. CMOS logic and 3D integration
- 4.3.1. Top-tier active area formation
- 4.3.2. Polygate formation
- 4.3.3. Dopant activation for extensions, S/D, and contact areas
- 4.3.3.1. Shallow junction formation key factors
- 4.3.3.2. Application to electrical device structures
- 4.3.4. Silicide formation
- 4.3.5. Front end and back end of line dielectrics
- 4.3.6. Back end of line copper interconnects
- 4.3.7. Conclusion
- 4.4. Memory
- 4.4.1. Vertical access devices
- 4.4.2. Vertical channel transistors
- 4.4.3. Conclusion
- 4.5. Conclusion
- References
- Chapter 5: Materials science issues related to the fabrication of highly doped junctions by laser annealing of Group IV s ...
- 5.1. Introduction.
- 5.2. Structural investigations
- 5.2.1. Melting and recrystallization kinetics
- 5.2.1.1. Melting temperature (amorphous vs crystal)
- 5.2.1.2. Melt front propagation, melt duration, and resolidification velocity
- 5.2.1.3. Dopant segregation
- 5.2.2. Laser-induced damage
- 5.2.2.1. Melt threshold: Localized surface melt
- 5.2.2.2. Partial- and full-melt regimes
- Extended defects in ion-implanted damaged layers
- Partial melt of amorphous layers: Explosive crystallization
- Strain relaxation in melted SiGe layers
- 5.3. Dopant redistribution and activation in Si
- 5.3.1. Laser annealing for impurity activation
- 5.3.1.1. Introduction
- 5.3.1.2. Metastable solubility
- 5.3.1.3. Thermal stability
- 5.3.2. Laser annealing of Group III impurities
- 5.3.2.1. Boron (B)
- 5.3.2.2. Aluminum (Al)
- 5.3.2.3. Gallium (Ga)
- 5.3.2.4. Indium (In)
- 5.3.3. Laser annealing of Group V impurities
- 5.3.3.1. Phosphorus (P)
- 5.3.3.2. Arsenic (As)
- 5.3.3.3. Antimony (Sb)
- 5.3.4. Laser annealing of Group VI impurities
- 5.4. Dopant redistribution and activation in Ge
- 5.4.1. Introduction
- 5.4.2. Laser annealing of Group III impurities in Ge
- 5.4.2.1. Boron (B)
- 5.4.2.2. Aluminum (Al)
- 5.4.2.3. Gallium (Ga)
- 5.4.3. Laser annealing of Group V impurities in Ge
- 5.4.3.1. Phosphorus (P)
- 5.4.3.2. Arsenic (As)
- 5.4.3.3. Antimony (Sb)
- 5.5. Conclusion
- References
- Chapter 6: Continuum modeling and TCAD simulations of laser-related phenomena in CMOS applications
- 6.1. Introduction: Complexity and multiple time and space scales in the simulation of irradiation processing
- 6.2. Computation of the energy transfer between laser and matter
- 6.2.1. Optical excitations and relaxation phenomena
- 6.2.2. Ultrashort laser pulse (ps timescale): Electrons and phonons kinetics.
- 6.2.3. Thermalization approximation and self-consistent electromagnetic calculations for the heat sources in laser annealing
- 6.2.4. Calibration issues
- 6.3. Laser annealing TCAD simulation: Nonmelting processes
- 6.3.1. Predictions of the heating process in electronic device structures
- 6.3.1.1. 1D simulation example
- 6.3.1.2. Patterning effects: FinFET arrays
- 6.3.2. Diffusion, reactions, and alloy mixing in the solid phase
- 6.3.3. Energy transport mediated by phonons in the nanoscale: Failure of Fourier law and corrections
- 6.4. Laser annealing TCAD simulation: Melting processes
- 6.4.1. Liquid-phase transition fundamentals: Free energy barrier, nucleation, and evolution
- 6.4.2. Phase-field and enthalpy formalisms: Limits and merits
- 6.4.3. Simulation examples of melting processes in 1D, 2D, and 3D systems
- 6.4.4. Impurity evolution in melting processes: Diffusion, segregation, and solute trapping
- 6.5. Complex phenomena and advanced simulations
- 6.5.1. Alloy problem in melting laser annealing simulations
- 6.5.2. Anomalous redistribution of impurities in melting LA processes
- 6.5.3. Defect evolution and dopant activation in partial melting processes
- 6.5.4. Explosive crystallization
- 6.6. Conclusion and future perspectives
- References
- Chapter 7: Laser engineering of carbon materials for optoelectronic applications
- 7.1. Optoelectronic and display devices: State of the art
- 7.1.1. Current technologies
- 7.1.2. Future challenges in optoelectronic technologies
- 7.2. Introduction to carbon in electronics
- 7.2.1. Graphene, graphene-like, and graphitic thin films
- 7.2.1.1. Properties of thin graphitic layers
- 7.2.1.2. Elaboration techniques
- 7.2.1.3. Integration of TGL in microelectronic devices
- 7.2.2. Diamond-like carbon thin films
- 7.2.2.1. Definition and properties of DLC.
- 7.2.2.2. Elaboration techniques
- 7.2.2.3. Integration of DLC in optoelectronic devices
- 7.3. Laser engineering of carbon materials
- 7.3.1. Pulsed laser deposition of carbon
- 7.3.1.1. Principle and experimental setup
- 7.3.1.2. DLC properties regarding laser parameters
- 7.3.2. Laser surface annealing of DLC thin films
- 7.3.2.1. Objectives of DLC surface annealing
- 7.3.2.2. Effects of laser characteristics on the TGL+DLC thin-film structure
- 7.3.2.3. Electrical and optical properties of annealed DLC
- 7.3.2.4. Performances ratings
- 7.4. Conclusion and perspectives
- References
- Chapter 8: Optical hyperdoping
- 8.1. Introduction
- 8.1.1. Si as an intermediate band semiconductor
- 8.1.2. Intermediate band semiconductor by hyperdoping
- 8.2. Historic overview
- 8.2.1. Defect-mediated all-Si NIR photodetectors
- 8.2.2. Chalcogen fs-hyperdoped Si
- 8.3. Implantation and pulsed laser melting of transition metals in Si
- 8.3.1. Titanium
- 8.3.2. Gold
- 8.3.3. Other transition metal species
- 8.4. Recent electrical and defect measurements
- 8.5. Ge and GeSn
- 8.5.1. Background
- 8.5.2. Ion beam synthesis of GeSn alloys
- 8.6. Conclusion
- References
- Chapter 9: Laser ultra-doped silicon: Superconductivity and applications
- 9.1. Introduction
- 9.2. Laser-doped superconducting silicon: Gas immersion laser doping
- 9.2.1. Laser-induced fusion
- 9.2.2. Surface homogeneity
- 9.2.3. Dopant incorporation
- 9.2.4. Dopant content and distribution
- 9.2.5. Dopant-induced strain
- 9.3. Silicon: A BCS superconductor tunable with doping
- 9.4. All-silicon superconducting devices
- 9.4.1. Superconducting quantum interference device (SQUID)
- 9.4.2. Proximity effect and all-silicon superconductor/normal metal Josephson junctions
- 9.4.3. Superconducting microwave resonators.