Cargando…

Laser annealing processes in semiconductor technology : theory, modeling and applications in nanoelectronics /

Laser Annealing Processes in Semiconductor Technology: Theory, Modeling and Applications in Nanoelectronics synthesizes the scientific and technological advances of laser annealing processes for current and emerging nanotechnologies. The book provides an overview of the laser-matter interactions of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Cristiano, Fuccio (Editor ), La Magna, Antonino (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Woodhead Publishing, 2021.
Colección:Woodhead Publishing series in electronic and optical materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Laser Annealing Processes in Semiconductor Technology: Theory, Modeling, and Applications in Nanoelectronics
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1: Historical evolution of pulsed laser annealing for semiconductor processing
  • 1.1. Section 1: Introduction
  • 1.2. Section 2: Excimer laser technology
  • 1.2.1. Characteristics of the beam emitted by excimer lasers
  • 1.2.2. Parameters that are relevant for the light-material interaction
  • 1.2.3. Optics that can be used to shape the beam and prepare it for industrial applications
  • 1.3. Section 3: Excimer laser annealing for low-temperature polycrystalline silicon technology
  • 1.3.1. Excimer Laser process engineering
  • 1.3.1.1. Trailing-/leading-edge scanning mode
  • 1.3.1.2. Sequential lateral solidification
  • 1.3.1.3. Two-pass excimer Laser process
  • 1.3.1.4. Phase-modulated excimer laser annealing
  • 1.3.1.5. Micro-Czochralski technique
  • 1.3.2. Excimer laser-crystallized thin-film transistors
  • 1.4. Section 4: Excimer laser annealing in MOS technology
  • 1.4.1. Logic applications
  • 1.4.2. Power MOS and RF/microwave applications
  • 1.5. Conclusions
  • References
  • Chapter 2: Laser-matter interactions
  • 2.1. Introduction
  • 2.2. Absorption of electromagnetic radiation
  • 2.3. Thermal effects of laser radiation
  • 2.4. Differences across the electromagnetic spectrum
  • 2.5. Diffusion model extension to millisecond regime
  • 2.5.1. Thermal interaction
  • 2.5.2. Diffusion simulation and activation kinetics
  • 2.6. Concluding remarks
  • References
  • Chapter 3: Atomistic modeling of laser-related phenomena
  • 3.1. Introduction
  • 3.2. Atomistic simulation techniques
  • 3.2.1. Ab initio
  • 3.2.2. Tight binding
  • 3.2.3. Classical molecular dynamics
  • 3.2.4. Kinetic Monte Carlo
  • 3.2.5. Multiscale modeling.
  • 3.3. Laser annealing modeling from an atomistic perspective
  • 3.3.1. Ab initio models
  • 3.3.1.1. Finite temperature-density functional theory
  • 3.3.1.2. Finite temperature-density functional perturbation theory
  • 3.3.1.3. Time-dependent density functional theory
  • 3.3.2. Tight binding models
  • 3.3.2.1. Finite temperature tight binding simulations
  • 3.3.2.2. Time-dependent tight binding simulations
  • 3.3.3. Classical molecular dynamics models
  • 3.3.3.1. Preassumed heating profiles
  • 3.3.3.2. Two-temperature model molecular dynamics
  • 3.3.3.3. Electronic-temperature-dependent interatomic potentials
  • 3.4. Laser-related phenomena in semiconductors
  • 3.4.1. Melting and regrowth
  • 3.4.2. Dopant and defect kinetics
  • 3.4.3. Dopant segregation
  • 3.4.4. Anomalous generation of extended defects
  • 3.5. Conclusions
  • References
  • Chapter 4: Laser annealing applications for semiconductor devices manufacturing
  • 4.1. Introduction
  • 4.2. Power devices
  • 4.2.1. Si power devices
  • 4.2.2. Wide bandgap material power devices
  • 4.2.2.1. SiC annealing
  • 4.2.2.2. GaN annealing
  • 4.2.2.3. Ohmic contact formation
  • 4.2.3. Conclusion
  • 4.3. CMOS logic and 3D integration
  • 4.3.1. Top-tier active area formation
  • 4.3.2. Polygate formation
  • 4.3.3. Dopant activation for extensions, S/D, and contact areas
  • 4.3.3.1. Shallow junction formation key factors
  • 4.3.3.2. Application to electrical device structures
  • 4.3.4. Silicide formation
  • 4.3.5. Front end and back end of line dielectrics
  • 4.3.6. Back end of line copper interconnects
  • 4.3.7. Conclusion
  • 4.4. Memory
  • 4.4.1. Vertical access devices
  • 4.4.2. Vertical channel transistors
  • 4.4.3. Conclusion
  • 4.5. Conclusion
  • References
  • Chapter 5: Materials science issues related to the fabrication of highly doped junctions by laser annealing of Group IV s ...
  • 5.1. Introduction.
  • 5.2. Structural investigations
  • 5.2.1. Melting and recrystallization kinetics
  • 5.2.1.1. Melting temperature (amorphous vs crystal)
  • 5.2.1.2. Melt front propagation, melt duration, and resolidification velocity
  • 5.2.1.3. Dopant segregation
  • 5.2.2. Laser-induced damage
  • 5.2.2.1. Melt threshold: Localized surface melt
  • 5.2.2.2. Partial- and full-melt regimes
  • Extended defects in ion-implanted damaged layers
  • Partial melt of amorphous layers: Explosive crystallization
  • Strain relaxation in melted SiGe layers
  • 5.3. Dopant redistribution and activation in Si
  • 5.3.1. Laser annealing for impurity activation
  • 5.3.1.1. Introduction
  • 5.3.1.2. Metastable solubility
  • 5.3.1.3. Thermal stability
  • 5.3.2. Laser annealing of Group III impurities
  • 5.3.2.1. Boron (B)
  • 5.3.2.2. Aluminum (Al)
  • 5.3.2.3. Gallium (Ga)
  • 5.3.2.4. Indium (In)
  • 5.3.3. Laser annealing of Group V impurities
  • 5.3.3.1. Phosphorus (P)
  • 5.3.3.2. Arsenic (As)
  • 5.3.3.3. Antimony (Sb)
  • 5.3.4. Laser annealing of Group VI impurities
  • 5.4. Dopant redistribution and activation in Ge
  • 5.4.1. Introduction
  • 5.4.2. Laser annealing of Group III impurities in Ge
  • 5.4.2.1. Boron (B)
  • 5.4.2.2. Aluminum (Al)
  • 5.4.2.3. Gallium (Ga)
  • 5.4.3. Laser annealing of Group V impurities in Ge
  • 5.4.3.1. Phosphorus (P)
  • 5.4.3.2. Arsenic (As)
  • 5.4.3.3. Antimony (Sb)
  • 5.5. Conclusion
  • References
  • Chapter 6: Continuum modeling and TCAD simulations of laser-related phenomena in CMOS applications
  • 6.1. Introduction: Complexity and multiple time and space scales in the simulation of irradiation processing
  • 6.2. Computation of the energy transfer between laser and matter
  • 6.2.1. Optical excitations and relaxation phenomena
  • 6.2.2. Ultrashort laser pulse (ps timescale): Electrons and phonons kinetics.
  • 6.2.3. Thermalization approximation and self-consistent electromagnetic calculations for the heat sources in laser annealing
  • 6.2.4. Calibration issues
  • 6.3. Laser annealing TCAD simulation: Nonmelting processes
  • 6.3.1. Predictions of the heating process in electronic device structures
  • 6.3.1.1. 1D simulation example
  • 6.3.1.2. Patterning effects: FinFET arrays
  • 6.3.2. Diffusion, reactions, and alloy mixing in the solid phase
  • 6.3.3. Energy transport mediated by phonons in the nanoscale: Failure of Fourier law and corrections
  • 6.4. Laser annealing TCAD simulation: Melting processes
  • 6.4.1. Liquid-phase transition fundamentals: Free energy barrier, nucleation, and evolution
  • 6.4.2. Phase-field and enthalpy formalisms: Limits and merits
  • 6.4.3. Simulation examples of melting processes in 1D, 2D, and 3D systems
  • 6.4.4. Impurity evolution in melting processes: Diffusion, segregation, and solute trapping
  • 6.5. Complex phenomena and advanced simulations
  • 6.5.1. Alloy problem in melting laser annealing simulations
  • 6.5.2. Anomalous redistribution of impurities in melting LA processes
  • 6.5.3. Defect evolution and dopant activation in partial melting processes
  • 6.5.4. Explosive crystallization
  • 6.6. Conclusion and future perspectives
  • References
  • Chapter 7: Laser engineering of carbon materials for optoelectronic applications
  • 7.1. Optoelectronic and display devices: State of the art
  • 7.1.1. Current technologies
  • 7.1.2. Future challenges in optoelectronic technologies
  • 7.2. Introduction to carbon in electronics
  • 7.2.1. Graphene, graphene-like, and graphitic thin films
  • 7.2.1.1. Properties of thin graphitic layers
  • 7.2.1.2. Elaboration techniques
  • 7.2.1.3. Integration of TGL in microelectronic devices
  • 7.2.2. Diamond-like carbon thin films
  • 7.2.2.1. Definition and properties of DLC.
  • 7.2.2.2. Elaboration techniques
  • 7.2.2.3. Integration of DLC in optoelectronic devices
  • 7.3. Laser engineering of carbon materials
  • 7.3.1. Pulsed laser deposition of carbon
  • 7.3.1.1. Principle and experimental setup
  • 7.3.1.2. DLC properties regarding laser parameters
  • 7.3.2. Laser surface annealing of DLC thin films
  • 7.3.2.1. Objectives of DLC surface annealing
  • 7.3.2.2. Effects of laser characteristics on the TGL+DLC thin-film structure
  • 7.3.2.3. Electrical and optical properties of annealed DLC
  • 7.3.2.4. Performances ratings
  • 7.4. Conclusion and perspectives
  • References
  • Chapter 8: Optical hyperdoping
  • 8.1. Introduction
  • 8.1.1. Si as an intermediate band semiconductor
  • 8.1.2. Intermediate band semiconductor by hyperdoping
  • 8.2. Historic overview
  • 8.2.1. Defect-mediated all-Si NIR photodetectors
  • 8.2.2. Chalcogen fs-hyperdoped Si
  • 8.3. Implantation and pulsed laser melting of transition metals in Si
  • 8.3.1. Titanium
  • 8.3.2. Gold
  • 8.3.3. Other transition metal species
  • 8.4. Recent electrical and defect measurements
  • 8.5. Ge and GeSn
  • 8.5.1. Background
  • 8.5.2. Ion beam synthesis of GeSn alloys
  • 8.6. Conclusion
  • References
  • Chapter 9: Laser ultra-doped silicon: Superconductivity and applications
  • 9.1. Introduction
  • 9.2. Laser-doped superconducting silicon: Gas immersion laser doping
  • 9.2.1. Laser-induced fusion
  • 9.2.2. Surface homogeneity
  • 9.2.3. Dopant incorporation
  • 9.2.4. Dopant content and distribution
  • 9.2.5. Dopant-induced strain
  • 9.3. Silicon: A BCS superconductor tunable with doping
  • 9.4. All-silicon superconducting devices
  • 9.4.1. Superconducting quantum interference device (SQUID)
  • 9.4.2. Proximity effect and all-silicon superconductor/normal metal Josephson junctions
  • 9.4.3. Superconducting microwave resonators.