Classical and analytical mechanics : theory, applied examples, and practice /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Classical and Analytical Mechanics
- Copyright
- Contents
- List of figures
- List of tables
- About the author
- Preface
- Notation
- Introduction
- 1 Kinematics of a point
- 1.1 Products of vectors
- 1.1.1 Internal (scalar) product
- 1.1.2 Vector product
- 1.1.3 Main properties of triple products
- 1.2 Generalized coordinates
- 1.2.1 Different possible coordinates
- 1.2.2 Definition of generalized coordinates
- 1.2.3 Relationship of generalized coordinates with Cartesian
- 1.2.4 Coefficients of Lam�e
- 1.3 Kinematics in generalized coordinates
- 1.3.1 Velocity in generalized coordinates
- 1.3.2 Acceleration in generalized coordinates
- 1.4 Movement in the cylindrical and spherical coordinate systems
- 1.4.1 Movement in cylindrical coordinates
- 1.4.2 Movement in spherical coordinates
- 1.5 Normal and tangential accelerations
- 1.6 Some examples
- 1.7 Exercises
- 2 Rigid body kinematics
- 2.1 Angular velocity
- 2.1.1 Definition of a rigid body
- 2.1.2 The Euler theorem
- 2.1.3 Joint rotation with a common pivot
- 2.1.4 Parallel and non-coplanar rotations
- 2.2 Complex movements of the rigid body
- 2.2.1 General relations
- 2.2.2 Plane non-parallel motion and center of velocities
- 2.3 Complex movement of a point
- 2.3.1 Absolute velocity
- 2.3.2 Absolute acceleration
- 2.4 Examples
- 2.5 Kinematics of a rigid body rotation
- 2.5.1 Finite rotations
- 2.5.2 Rotation matrix
- 2.5.3 Composition of rotations
- 2.6 Rotations and quaternions
- 2.6.1 Quaternions
- 2.6.2 Composition or summation of rotations as a quaternion
- 2.7 Differential kinematic equations (DKEs)
- 2.7.1 DKEs in Euler coordinates
- 2.7.2 DKEs in quaternions: Poisson equation
- 2.8 Exercises
- 3 Dynamics
- 3.1 Main dynamics characteristics
- 3.1.1 System of material points
- 3.1.2 Three main dynamics characteristics
- 3.2 Axioms or Newton's laws
- 3.2.1 Newton's axioms
- 3.2.2 Expression for �Q
- 3.2.3 Expression for �KA
- 3.3 Force work and potential forces
- 3.3.1 Elementary and total force work
- 3.3.2 Potential forces
- 3.3.3 Force power and expression for j
- 3.3.4 Conservative systems
- 3.4 Virial of a system
- 3.4.1 Main definition of virial
- 3.4.2 Virial for homogeneous potential energies
- 3.5 Properties of the center of mass
- 3.5.1 Dynamics of the center of inertia (mass)
- 3.6 ``King/K�onig/Rey'' theorem
- 3.6.1 Principle theorem
- 3.6.2 Moment of inertia and the impulse moment with respect to a pivot
- 3.6.3 A rigid flat body rotating in the same plane
- 3.6.4 Calculation of moments of inertia for different rigid bodies
- 3.6.5 K�onig theorem application
- 3.6.6 Steiner's theorem on the inertia moment
- 3.7 Movements with friction
- 3.8 Exercises
- 4 Non-inertial and variable-mass systems
- 4.1 Non-inertial systems
- 4.1.1 Newton's second law regarding a relative system