Cargando…

Machine learning and data science in the oil and gas industry : best practices, tools, and case studies /

Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bangert, Patrick
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Gulf Professional, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1240670836
003 OCoLC
005 20231120010534.0
006 m o d
007 cr |n|||||||||
008 210307s2021 mau o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d N$T  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d ORMDA  |d K6U  |d OCLCQ 
020 |a 9780128209141  |q (electronic bk.) 
020 |a 0128209143  |q (electronic bk.) 
020 |z 9780128207147 
020 |z 0128207140 
035 |a (OCoLC)1240670836 
050 4 |a HD9560.5 
082 0 4 |a 665.50285/631  |2 23 
245 0 0 |a Machine learning and data science in the oil and gas industry :  |b best practices, tools, and case studies /  |c edited by Patrick Bangert. 
260 |a Cambridge, MA :  |b Gulf Professional,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful Gain practical understanding of machine learning used in oil and gas operations through contributed case studies Learn change management skills that will help gain confidence in pursuing the technology Understand the workflow of a full-scale project and where machine learning benefits (and where it does not). 
650 0 |a Petroleum industry and trade  |x Data processing. 
650 0 |a Machine learning. 
650 6 |a P�etrole  |0 (CaQQLa)201-0021550  |x Industrie et commerce  |0 (CaQQLa)201-0021550  |x Informatique.  |0 (CaQQLa)201-0380011 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Petroleum industry and trade  |x Data processing.  |2 fast  |0 (OCoLC)fst01059562 
700 1 |a Bangert, Patrick. 
776 0 8 |i Print version:  |z 0128207140  |z 9780128207147  |w (OCoLC)1158482535 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128207147  |z Texto completo