Cargando…

Computer vision for microscopy image analysis /

Are you a computer scientist working on image analysis? Are you a biologist seeking tools to process the microscopy data from image-based experiments? Computer Vision for Microscopy Image Analysis provides a comprehensive and in-depth discussion of modern computer vision techniques, in particular de...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Chen, Mei (Computer scientist) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2021.
Colección:Computer vision and pattern recognition series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1230926529
003 OCoLC
005 20231120010527.0
006 m o d
007 cr cnu---unuuu
008 200818s2021 ne o 000 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCO  |d N$T  |d OCLCO  |d OPELS  |d UKAHL  |d OCLCF  |d ABC  |d YDXIT  |d YDX  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBC0D6034  |2 bnb 
016 7 |a 019930294  |2 Uk 
020 |a 0128149736 
020 |a 9780128149737  |q (electronic bk.) 
020 |z 9780128149720  |q (pbk.) 
035 |a (OCoLC)1230926529 
050 4 |a QH207  |b .C66 2021 
082 0 4 |a 502.820285637  |2 23 
245 0 0 |a Computer vision for microscopy image analysis /  |c edited by Mei Chen. 
264 1 |a Amsterdam :  |b Academic Press,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer vision and pattern recognition 
520 |a Are you a computer scientist working on image analysis? Are you a biologist seeking tools to process the microscopy data from image-based experiments? Computer Vision for Microscopy Image Analysis provides a comprehensive and in-depth discussion of modern computer vision techniques, in particular deep learning, for microscopy image analysis that will advance your efforts. Progress in imaging techniques has enabled the acquisition of large volumes of microscopy data and made it possible to conduct large-scale, image-based experiments for biomedical discovery. The main challenge and bottleneck in such experiments is the conversion of "big visual data" into interpretable information. Visual analysis of large-scale microscopy data is a daunting task. Computer vision has the potential to automate this task. One key advantage is that computers perform analysis more reproducibly and less subjectively than human annotators. Moreover, high-throughput microscopy calls for effective and efficient techniques as there are not enough human resources to advance science by manual annotation. This book articulates the strong need for biologists and computer vision experts to collaborate to overcome the limits of human visual perception, and devotes a chapter each to the major steps in analyzing microscopy images, such as detection and segmentation, classification, tracking, and event detection 
650 0 |a Microscopy  |x Data processing. 
650 0 |a Computer vision. 
650 6 |a Microscopie  |0 (CaQQLa)201-0055735  |x Informatique.  |0 (CaQQLa)201-0380011 
650 6 |a Vision par ordinateur.  |0 (CaQQLa)201-0074889 
650 7 |a Computer vision  |2 fast  |0 (OCoLC)fst00872687 
650 7 |a Microscopy  |x Data processing  |2 fast  |0 (OCoLC)fst01020063 
700 1 |a Chen, Mei  |c (Computer scientist),  |e editor. 
776 0 8 |i Print version:  |z 9780128149720 
830 0 |a Computer vision and pattern recognition series. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128149720  |z Texto completo