Cargando…

Trends in deep learning methodologies : algorithms, applications, and systems /

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful comput...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Piuri, Vincenzo (Editor ), Raj, Sandeep (Editor ), Genovese, Angelo, 1985- (Editor ), Srivastava, Rajshree (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2021.
Colección:Hybrid computational intelligence for pattern analysis and understanding
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1230531334
003 OCoLC
005 20231120010526.0
006 m o d
007 cr cnu---unuuu
008 201109t20212021enka ob 001 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCO  |d OCLCF  |d OPELS  |d YDXIT  |d ABC  |d N$T  |d YDX  |d UKAHL  |d WAU  |d OCLCO  |d ORMDA  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBC0I0460  |2 bnb 
016 7 |a 020013543  |2 Uk 
019 |a 1220827976  |a 1223025637 
020 |a 0128232684 
020 |a 9780128222263  |q (electronic bk.) 
020 |a 0128222263  |q (electronic bk.) 
020 |a 9780128232682  |q (electronic bk.) 
035 |a (OCoLC)1230531334  |z (OCoLC)1220827976  |z (OCoLC)1223025637 
050 4 |a Q335  |b .T74 2021 
082 0 4 |a 006.3  |2 23 
245 0 0 |a Trends in deep learning methodologies :  |b algorithms, applications, and systems /  |c edited by Vincenzo Piuri, Sandeep Raj, Angelo Genovese, Rajshree Srivastava. 
264 1 |a London :  |b Academic Press,  |c 2021. 
300 |a 1 online resource (xvii, 288 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Hybrid computational intelligence for pattern analysis and understanding 
504 |a Includes bibliographical references and index. 
520 |a Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. 
588 0 |a Online resource; title from PDF title page (Ebook Central, viewed July 22, 2021). 
650 0 |a Artificial intelligence. 
650 0 |a Neural networks (Computer science) 
650 6 |a Intelligence artificielle.  |0 (CaQQLa)201-0008626 
650 6 |a R�eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597 
650 7 |a artificial intelligence.  |2 aat  |0 (CStmoGRI)aat300251574 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
700 1 |a Piuri, Vincenzo,  |e editor. 
700 1 |a Raj, Sandeep,  |e editor. 
700 1 |a Genovese, Angelo,  |d 1985-  |e editor. 
700 1 |a Srivastava, Rajshree,  |e editor. 
776 0 8 |i Print version:  |z 9780128222263 
830 0 |a Hybrid computational intelligence for pattern analysis and understanding 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128222263  |z Texto completo