Cargando…

Plastics industry 4.0 : potentials and applications in plastics technology /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hopmann, Christian (Autor), Schmitz, Mauritius (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Munich : Carl Hanser Verlag, [2021]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1227106560
003 OCoLC
005 20231120010525.0
006 m o d
007 cr cnu|||unuuu
008 201217s2021 gw a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d OCLCF  |d YDX  |d SOE  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OPELS  |d OCLCO 
020 |a 9781569907979  |q (electronic bk.) 
020 |a 1569907978  |q (electronic bk.) 
020 |z 9781569907962 
035 |a (OCoLC)1227106560 
050 4 |a TA455.P5 
082 0 4 |a 668.4  |2 23 
100 1 |a Hopmann, Christian,  |e author. 
245 1 0 |a Plastics industry 4.0 :  |b potentials and applications in plastics technology /  |c Christian Hopmann, Mauritius Schmitz. 
264 1 |a Munich :  |b Carl Hanser Verlag,  |c [2021] 
264 2 |a Cincinnati, OH :  |b Hanser Publications 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed December 18, 2020). 
505 0 |a Intro -- Preface -- About the Authors -- Contents -- 1 Introduction -- 1.1 Potentials and Benefits of Industry 4.0 -- 1.2 Challenges for Successful Implementation of Industry 4.0 -- 2 Data Acquisition and Process Monitoring as Enabler for Industry 4.0 -- 2.1 The Necessity of Data Acquisition -- 2.1.1 Quality Control in the 1990s -- 2.1.2 Exemplary Fields of Application -- 2.2 Gaining Insights into the Process -- 2.2.1 Differentiation of Injection Molding Process Data -- 2.2.2 Economic Evaluation of the Injection Molding Process Based on Measurable Values -- 2.2.3 Process Data for Setup of a New Process -- 2.2.4 Process Control -- 2.2.4.1 Online Process Control -- 2.2.4.2 Process Control Concepts -- 2.3 Data Acquisition Methods -- 2.3.1 Material Properties for Digital Engineering -- 2.3.1.1 Thermal Properties of Plastic Melts -- 2.3.1.2 pvT-Behavior -- 2.3.1.3 Rheological Properties -- 2.3.1.4 Mechanical Properties -- 2.3.1.5 Applications of Data in Digital Engineering -- 2.3.2 Data Acquisition and Process Monitoring Methods -- 2.3.2.1 Temperature Measurement -- 2.3.2.2 Pressure Measurement -- 2.3.2.3 Electrical Pressure Measurement -- 2.3.2.4 Position Measurement -- 2.3.3 Humidity Measurement -- 2.3.4 Part Measurement -- 2.3.4.1 Part Measurement (Post-Mortem) -- 2.3.4.2 Optical Measurement -- 2.3.4.3 Tactile Measurement -- 2.3.5 Combination of Tactile and Optical Measurements -- 2.4 The Different Types of Quality Control -- 2.4.1 Offline Quality Control -- 2.4.2 Inline Quality Control -- 2.4.3 Online Quality Control -- 3 Cyber-Physical Systems -- 3.1 Computer Integrated Manufacturing as Conceptual Foundation for Cyber-Physical Production Systems -- 3.2 CPPS in Plastics Processing -- 3.3 Communication Capability of CPPS Components in Injection Molding -- 3.4 Planning and Realizing a CPPS in Plastics Processing. 
505 8 |a 4 Models and Artificial Intelligence -- 4.1 Model Quality -- 4.2 Three Different Categories of Models -- 4.2.1 Physical Models -- 4.2.2 Knowledge-Based Systems -- 4.2.3 Artificial Intelligence -- 4.2.3.1 AI Modeling Methods -- 4.2.3.2 Artificial Neural Networks (ANNs) -- 4.2.3.3 AI Modeling Examples in the Plastics Industry -- 5 Global Connectivity -- 5.1 Data Availability -- 5.2 Data Management -- 5.3 IT Infrastructure -- 5.3.1 Cloud Computing -- 5.3.2 Edge Computing -- 5.3.3 Hybrid System in Plastics Processing -- 5.4 Machine and Data Interfaces -- 5.4.1 Digital I/O -- 5.4.2 Analog I/O -- 5.4.3 Serial Interfaces -- 5.5 Data Systems -- 5.5.1 Introduction -- 5.5.2 Need for Data Processing -- 5.5.3 Development of Data Systems -- 5.5.4 Enterprise Resource Planning -- 5.5.5 Manufacturing Execution System -- 5.5.6 ERP/MES in the Plastics Processing Industry -- 5.5.7 Requirements for ERP/MES in the Context of Industry 4.0 -- 5.5.8 Developed Systems in Research -- 5.5.9 Used Systems in the Industry -- 5.5.9.1 SAP ERP -- 5.5.9.2 FEKOR MES -- 5.5.9.3 authenTIG -- 6 Digital Engineering -- 6.1 Introduction -- 6.1.1 Digital Materials -- 6.1.2 Material Modeling on the Nanoscopic Scale -- 6.1.3 Material Modeling on the Microscopic and Mesoscopic Scale -- 6.1.4 Material Models on the Macroscopic Scale -- 6.1.4.1 Isotropic Linear-Elastic Behavior -- 6.1.4.2 Orthotropic Linear-Elastic Behavior -- 6.1.4.3 Hyperelastic Behavior -- 6.1.4.4 Anisotropic Hyperelastic Behavior -- 6.1.4.5 Plastic Material Models -- 6.1.4.6 Viscoelasticity -- 6.1.4.7 Damage Model for Dynamic Load -- 6.2 Process Simulation -- 6.2.1 Setting up Injection Molding Simulation -- 6.2.2 Design and Optimization Using Injection Molding Simulation -- 6.3 Result Analysis and Mapping -- 6.3.1 Calculation of Mechanical Properties Based on Local Microstructure -- 6.3.2 Weld Lines. 
505 8 |a 6.3.3 Elastomers: Considering Crosslinking Level in Structural Simulation -- 6.3.4 Thermoplastic Elastomers: Determination of Elastomer Particle Size -- 6.4 Part Simulation -- 6.5 Artificial Neural Networks in Virtual Process Development -- 7 Complex Value Chain -- 7.1 Introduction to Complex Value Chains -- 7.2 Shop Floor Management -- 7.2.1 Lean Management -- 7.2.2 Key Figures for Plastics Processing -- 7.2.3 Shop Floor Management in the Context of Industry 4.0 -- 7.2.4 Asset Identification -- 7.2.4.1 Identification, Tracking, and Tracing of Assets -- 7.2.4.2 Technical Solutions of Asset Identification -- 7.2.4.3 Plastic-Related RFID Research Projects -- 7.2.5 Warehouse Management -- 7.2.6 Logistics 4.0 -- 7.2.7 Equipment Management -- 7.3 Examples of Complex Value Chains in Plastics Processing -- 7.3.1 Model-Based Setup of Injection Molding Processes -- 7.3.2 Producing Multiple Variants in a Production Cell -- 8 Assistant Systems -- 8.1 Requirements and Functionalities Regarding Assistant Systems -- 8.2 Simulation-Based Assistance for Process Setup -- 8.3 Predictive Maintenance -- 8.3.1 Maintenance Routines -- 8.3.2 Predictive Maintenance in Injection Molding -- 8.3.2.1 Predictive Maintenance for Injection Molding Machines -- 8.3.2.2 Predictive Maintenance for Injection Molds -- 8.4 Augmented Reality and Virtual Reality as Visual Support -- 8.4.1 Definition and Demarcation of Terms -- 8.4.2 State of the Art -- 8.4.3 Industry 4.0 and Augmented Reality -- 8.5 Commercially Available Tools -- 8.5.1 Engel iQ Control Systems for Process Support in Injection Molding -- 8.5.2 ARBURG Continuous Quality Control with the CQC System -- 8.5.3 KraussMaffei Adaptive Process Control to Deal with Material Fluctuations -- 8.5.4 Sumitomo Enhanced Machine Efficiency with ActivePlus -- 8.5.5 Process Optimization with STASA QC -- Index. 
650 0 |a Plastics  |x Technological innovations. 
650 0 |a Plastics industry and trade. 
650 6 |a Mati�eres plastiques  |0 (CaQQLa)201-0010878  |x Innovations.  |0 (CaQQLa)201-0379286 
650 6 |a Mati�eres plastiques  |x Industrie.  |0 (CaQQLa)201-0025575 
650 7 |a Plastics industry and trade  |2 fast  |0 (OCoLC)fst01066679 
650 7 |a Plastics  |x Technological innovations  |2 fast  |0 (OCoLC)fst01066627 
700 1 |a Schmitz, Mauritius,  |e author. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781569907962  |z Texto completo