|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1227106560 |
003 |
OCoLC |
005 |
20231120010525.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
201217s2021 gw a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d OCLCO
|d OCLCF
|d YDX
|d SOE
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OPELS
|d OCLCO
|
020 |
|
|
|a 9781569907979
|q (electronic bk.)
|
020 |
|
|
|a 1569907978
|q (electronic bk.)
|
020 |
|
|
|z 9781569907962
|
035 |
|
|
|a (OCoLC)1227106560
|
050 |
|
4 |
|a TA455.P5
|
082 |
0 |
4 |
|a 668.4
|2 23
|
100 |
1 |
|
|a Hopmann, Christian,
|e author.
|
245 |
1 |
0 |
|a Plastics industry 4.0 :
|b potentials and applications in plastics technology /
|c Christian Hopmann, Mauritius Schmitz.
|
264 |
|
1 |
|a Munich :
|b Carl Hanser Verlag,
|c [2021]
|
264 |
|
2 |
|a Cincinnati, OH :
|b Hanser Publications
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed December 18, 2020).
|
505 |
0 |
|
|a Intro -- Preface -- About the Authors -- Contents -- 1 Introduction -- 1.1 Potentials and Benefits of Industry 4.0 -- 1.2 Challenges for Successful Implementation of Industry 4.0 -- 2 Data Acquisition and Process Monitoring as Enabler for Industry 4.0 -- 2.1 The Necessity of Data Acquisition -- 2.1.1 Quality Control in the 1990s -- 2.1.2 Exemplary Fields of Application -- 2.2 Gaining Insights into the Process -- 2.2.1 Differentiation of Injection Molding Process Data -- 2.2.2 Economic Evaluation of the Injection Molding Process Based on Measurable Values -- 2.2.3 Process Data for Setup of a New Process -- 2.2.4 Process Control -- 2.2.4.1 Online Process Control -- 2.2.4.2 Process Control Concepts -- 2.3 Data Acquisition Methods -- 2.3.1 Material Properties for Digital Engineering -- 2.3.1.1 Thermal Properties of Plastic Melts -- 2.3.1.2 pvT-Behavior -- 2.3.1.3 Rheological Properties -- 2.3.1.4 Mechanical Properties -- 2.3.1.5 Applications of Data in Digital Engineering -- 2.3.2 Data Acquisition and Process Monitoring Methods -- 2.3.2.1 Temperature Measurement -- 2.3.2.2 Pressure Measurement -- 2.3.2.3 Electrical Pressure Measurement -- 2.3.2.4 Position Measurement -- 2.3.3 Humidity Measurement -- 2.3.4 Part Measurement -- 2.3.4.1 Part Measurement (Post-Mortem) -- 2.3.4.2 Optical Measurement -- 2.3.4.3 Tactile Measurement -- 2.3.5 Combination of Tactile and Optical Measurements -- 2.4 The Different Types of Quality Control -- 2.4.1 Offline Quality Control -- 2.4.2 Inline Quality Control -- 2.4.3 Online Quality Control -- 3 Cyber-Physical Systems -- 3.1 Computer Integrated Manufacturing as Conceptual Foundation for Cyber-Physical Production Systems -- 3.2 CPPS in Plastics Processing -- 3.3 Communication Capability of CPPS Components in Injection Molding -- 3.4 Planning and Realizing a CPPS in Plastics Processing.
|
505 |
8 |
|
|a 4 Models and Artificial Intelligence -- 4.1 Model Quality -- 4.2 Three Different Categories of Models -- 4.2.1 Physical Models -- 4.2.2 Knowledge-Based Systems -- 4.2.3 Artificial Intelligence -- 4.2.3.1 AI Modeling Methods -- 4.2.3.2 Artificial Neural Networks (ANNs) -- 4.2.3.3 AI Modeling Examples in the Plastics Industry -- 5 Global Connectivity -- 5.1 Data Availability -- 5.2 Data Management -- 5.3 IT Infrastructure -- 5.3.1 Cloud Computing -- 5.3.2 Edge Computing -- 5.3.3 Hybrid System in Plastics Processing -- 5.4 Machine and Data Interfaces -- 5.4.1 Digital I/O -- 5.4.2 Analog I/O -- 5.4.3 Serial Interfaces -- 5.5 Data Systems -- 5.5.1 Introduction -- 5.5.2 Need for Data Processing -- 5.5.3 Development of Data Systems -- 5.5.4 Enterprise Resource Planning -- 5.5.5 Manufacturing Execution System -- 5.5.6 ERP/MES in the Plastics Processing Industry -- 5.5.7 Requirements for ERP/MES in the Context of Industry 4.0 -- 5.5.8 Developed Systems in Research -- 5.5.9 Used Systems in the Industry -- 5.5.9.1 SAP ERP -- 5.5.9.2 FEKOR MES -- 5.5.9.3 authenTIG -- 6 Digital Engineering -- 6.1 Introduction -- 6.1.1 Digital Materials -- 6.1.2 Material Modeling on the Nanoscopic Scale -- 6.1.3 Material Modeling on the Microscopic and Mesoscopic Scale -- 6.1.4 Material Models on the Macroscopic Scale -- 6.1.4.1 Isotropic Linear-Elastic Behavior -- 6.1.4.2 Orthotropic Linear-Elastic Behavior -- 6.1.4.3 Hyperelastic Behavior -- 6.1.4.4 Anisotropic Hyperelastic Behavior -- 6.1.4.5 Plastic Material Models -- 6.1.4.6 Viscoelasticity -- 6.1.4.7 Damage Model for Dynamic Load -- 6.2 Process Simulation -- 6.2.1 Setting up Injection Molding Simulation -- 6.2.2 Design and Optimization Using Injection Molding Simulation -- 6.3 Result Analysis and Mapping -- 6.3.1 Calculation of Mechanical Properties Based on Local Microstructure -- 6.3.2 Weld Lines.
|
505 |
8 |
|
|a 6.3.3 Elastomers: Considering Crosslinking Level in Structural Simulation -- 6.3.4 Thermoplastic Elastomers: Determination of Elastomer Particle Size -- 6.4 Part Simulation -- 6.5 Artificial Neural Networks in Virtual Process Development -- 7 Complex Value Chain -- 7.1 Introduction to Complex Value Chains -- 7.2 Shop Floor Management -- 7.2.1 Lean Management -- 7.2.2 Key Figures for Plastics Processing -- 7.2.3 Shop Floor Management in the Context of Industry 4.0 -- 7.2.4 Asset Identification -- 7.2.4.1 Identification, Tracking, and Tracing of Assets -- 7.2.4.2 Technical Solutions of Asset Identification -- 7.2.4.3 Plastic-Related RFID Research Projects -- 7.2.5 Warehouse Management -- 7.2.6 Logistics 4.0 -- 7.2.7 Equipment Management -- 7.3 Examples of Complex Value Chains in Plastics Processing -- 7.3.1 Model-Based Setup of Injection Molding Processes -- 7.3.2 Producing Multiple Variants in a Production Cell -- 8 Assistant Systems -- 8.1 Requirements and Functionalities Regarding Assistant Systems -- 8.2 Simulation-Based Assistance for Process Setup -- 8.3 Predictive Maintenance -- 8.3.1 Maintenance Routines -- 8.3.2 Predictive Maintenance in Injection Molding -- 8.3.2.1 Predictive Maintenance for Injection Molding Machines -- 8.3.2.2 Predictive Maintenance for Injection Molds -- 8.4 Augmented Reality and Virtual Reality as Visual Support -- 8.4.1 Definition and Demarcation of Terms -- 8.4.2 State of the Art -- 8.4.3 Industry 4.0 and Augmented Reality -- 8.5 Commercially Available Tools -- 8.5.1 Engel iQ Control Systems for Process Support in Injection Molding -- 8.5.2 ARBURG Continuous Quality Control with the CQC System -- 8.5.3 KraussMaffei Adaptive Process Control to Deal with Material Fluctuations -- 8.5.4 Sumitomo Enhanced Machine Efficiency with ActivePlus -- 8.5.5 Process Optimization with STASA QC -- Index.
|
650 |
|
0 |
|a Plastics
|x Technological innovations.
|
650 |
|
0 |
|a Plastics industry and trade.
|
650 |
|
6 |
|a Mati�eres plastiques
|0 (CaQQLa)201-0010878
|x Innovations.
|0 (CaQQLa)201-0379286
|
650 |
|
6 |
|a Mati�eres plastiques
|x Industrie.
|0 (CaQQLa)201-0025575
|
650 |
|
7 |
|a Plastics industry and trade
|2 fast
|0 (OCoLC)fst01066679
|
650 |
|
7 |
|a Plastics
|x Technological innovations
|2 fast
|0 (OCoLC)fst01066627
|
700 |
1 |
|
|a Schmitz, Mauritius,
|e author.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781569907962
|z Texto completo
|