Photonics
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , , , , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2020.
|
Colección: | Interface transmission tutorial book series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Photonics
- Copyright
- Contents
- Preface
- Acknowledgments
- Part I Photonic paths
- 1 Open loop
- 1.1 Introduction
- 1.2 Infinite open loop
- 1.3 Free end semiinfinite open loop
- 1.4 Finite open loop
- 1.4.1 Matrix
- 1.4.2 Determinant
- 1.4.3 State definition
- 1.4.4 State phase shift
- 1.4.5 Eigenvalues and interface eigenvectors
- 1.4.6 Response function
- 1.4.7 Complete eigenfunctions
- 1.4.8 Resonant and forced responses
- 1.4.9 Fixed end open loop
- 1.4.10 Breaking translational invariance
- 1.5 Perspectives
- References
- 2 Closed loop
- 2.1 Introduction
- 2.2 Closing an open loop
- 2.3 Eigenvalues and eigenfunctions
- 2.4 Response function
- 2.5 Two simultaneous identical responses
- 2.6 Activation of the two states of closed loops
- References
- 3 Path states
- 3.1 Introduction
- 3.2 Path state properties
- 3.3 State theorems
- 3.3.1 State number conservation theorem
- 3.3.2 Confined state theorem
- 3.3.3 Bound in continuum state theorem
- 3.3.4 State activation theorems
- 3.3.4.1 Two state active points
- 3.3.4.2 One state active point and one system deformation point
- 3.3.5 Application to path states
- 3.4 General eigenfunction rules
- 3.4.1 Rule 1
- 3.4.2 Rule 2
- 3.5 Robust zeros and eigenvalues
- 3.5.1 Free end open loop
- 3.5.2 Fixed end open loop
- 3.5.3 Closed loop
- 3.5.3.1 For the first degenerate state
- 3.5.3.2 For the second degenerate state
- 3.5.4 Infinite open loop
- 3.5.4.1 For the first degenerate state
- 3.5.4.2 For the second degenerate state
- 3.6 Path state construction
- 3.7 Some perspectives
- Acknowledgments
- References
- 4 Open loop examples
- 4.1 Introduction
- 4.2 T network
- 4.2.1 Path states by inspection
- 4.2.2 The interface response inverse matrix
- 4.2.3 All eigenvalues from the state phase shift
- 4.2.4 Complete response function
- 4.2.4.1 x and x' in the same wire L
- 4.2.4.2 x and x' in the same wire L'
- 4.2.4.3 x in the wire L and x' in the wire L'
- 4.2.4.4 x in one wire L and x' in the other wire L
- 4.2.5 All eigenvalues and eigenfunctions from the response function
- 4.2.5.1 The ground state
- 4.2.5.2 For C=0
- 4.2.5.3 For 2SC'+S'C= 0
- 4.2.6 A possible application: a path bifurcation
- 4.3 Asymmetric cross
- 4.3.1 Path states by inspection
- 4.3.2 The interface response inverse matrix
- 4.3.3 All eigenvalues from the state phase shift
- 4.3.4 All eigenvalues and interface space eigenvectors
- 4.3.4.1 The ground state
- 4.3.4.2 For C=0
- 4.3.4.3 For C'=0
- 4.3.4.4 For C = C'=0
- 4.3.4.5 For C = �C'0
- 4.3.5 The interface response matrix
- 4.3.6 The complete response functions
- 4.3.6.1 When x and x' are in the same wire L
- 4.3.6.2 When x and x' are in the same wire L'
- 4.3.6.3 When x is in the wire L and x' in the other wire L
- 4.3.6.4 When x is in one wire L and x' in one wire L'