Cargando…

Photonics

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Dobrzy�nski, Leonard, Akjouj, Abdellatif, El Boudouti, El Houssaine, Leveque, Gaetan, Al-Wahsh, Housni, Pennec, Yan, Ghouila-Houri, Cecile, Talbi, Abdelkrim, Djafari-Rouhani, Bahram, Jin, Yabin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2020.
Colección:Interface transmission tutorial book series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Photonics
  • Copyright
  • Contents
  • Preface
  • Acknowledgments
  • Part I Photonic paths
  • 1 Open loop
  • 1.1 Introduction
  • 1.2 Infinite open loop
  • 1.3 Free end semiinfinite open loop
  • 1.4 Finite open loop
  • 1.4.1 Matrix
  • 1.4.2 Determinant
  • 1.4.3 State definition
  • 1.4.4 State phase shift
  • 1.4.5 Eigenvalues and interface eigenvectors
  • 1.4.6 Response function
  • 1.4.7 Complete eigenfunctions
  • 1.4.8 Resonant and forced responses
  • 1.4.9 Fixed end open loop
  • 1.4.10 Breaking translational invariance
  • 1.5 Perspectives
  • References
  • 2 Closed loop
  • 2.1 Introduction
  • 2.2 Closing an open loop
  • 2.3 Eigenvalues and eigenfunctions
  • 2.4 Response function
  • 2.5 Two simultaneous identical responses
  • 2.6 Activation of the two states of closed loops
  • References
  • 3 Path states
  • 3.1 Introduction
  • 3.2 Path state properties
  • 3.3 State theorems
  • 3.3.1 State number conservation theorem
  • 3.3.2 Confined state theorem
  • 3.3.3 Bound in continuum state theorem
  • 3.3.4 State activation theorems
  • 3.3.4.1 Two state active points
  • 3.3.4.2 One state active point and one system deformation point
  • 3.3.5 Application to path states
  • 3.4 General eigenfunction rules
  • 3.4.1 Rule 1
  • 3.4.2 Rule 2
  • 3.5 Robust zeros and eigenvalues
  • 3.5.1 Free end open loop
  • 3.5.2 Fixed end open loop
  • 3.5.3 Closed loop
  • 3.5.3.1 For the first degenerate state
  • 3.5.3.2 For the second degenerate state
  • 3.5.4 Infinite open loop
  • 3.5.4.1 For the first degenerate state
  • 3.5.4.2 For the second degenerate state
  • 3.6 Path state construction
  • 3.7 Some perspectives
  • Acknowledgments
  • References
  • 4 Open loop examples
  • 4.1 Introduction
  • 4.2 T network
  • 4.2.1 Path states by inspection
  • 4.2.2 The interface response inverse matrix
  • 4.2.3 All eigenvalues from the state phase shift
  • 4.2.4 Complete response function
  • 4.2.4.1 x and x' in the same wire L
  • 4.2.4.2 x and x' in the same wire L'
  • 4.2.4.3 x in the wire L and x' in the wire L'
  • 4.2.4.4 x in one wire L and x' in the other wire L
  • 4.2.5 All eigenvalues and eigenfunctions from the response function
  • 4.2.5.1 The ground state
  • 4.2.5.2 For C=0
  • 4.2.5.3 For 2SC'+S'C= 0
  • 4.2.6 A possible application: a path bifurcation
  • 4.3 Asymmetric cross
  • 4.3.1 Path states by inspection
  • 4.3.2 The interface response inverse matrix
  • 4.3.3 All eigenvalues from the state phase shift
  • 4.3.4 All eigenvalues and interface space eigenvectors
  • 4.3.4.1 The ground state
  • 4.3.4.2 For C=0
  • 4.3.4.3 For C'=0
  • 4.3.4.4 For C = C'=0
  • 4.3.4.5 For C = �C'0
  • 4.3.5 The interface response matrix
  • 4.3.6 The complete response functions
  • 4.3.6.1 When x and x' are in the same wire L
  • 4.3.6.2 When x and x' are in the same wire L'
  • 4.3.6.3 When x is in the wire L and x' in the other wire L
  • 4.3.6.4 When x is in one wire L and x' in one wire L'