Mathematical Methods of Analytical Mechanics
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
ISTE Press Ltd. : Elsevier,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Introduction to Mathematical Methods of Analytical Mechanics
- Copyright Page
- Contents
- Preface
- Mathematicians, Physicists and Astronomers Cited in this Book
- Important Notations
- PART 1: Introduction to the Calculus of Variations
- 1. Elementary Methods to the Calculus of Variations
- 1.1. First free extremum problems
- 1.2. First constrained extremum problem
- Lagrange multipliers
- 1.3. The fundamental lemma of the calculus of variations
- 1.4. Extremum of a free functional
- 1.5. Extremum for a constrained functional
- 1.6. More general problem of the calculus of variations
- 2. Variation of Curvilinear Integral
- 2.1. Geometrization of variational problems
- 2.2. First form of curvilinear integral
- 2.3. Second form of curvilinear integrals
- 2.4. Generalization and variation of derivative
- 2.5. First application: studying the optical path of light
- 2.6. Second application: the problem of isoperimeters
- 3. The Noether Theorem
- 3.1. Additional results on differential equations
- 3.2. One-parameter groups and Lie groups
- 3.3. Invariant integral under a Lie group
- 3.4. Further examination of Fermat's principle
- PART 2: Applications to Analytical Mechanics
- 4. The Methods of Analytical Mechanics
- 4.1. D'Alembert's principle
- 4.2. Back to analytical mechanics
- 4.3. The vibrating strings
- 4.4. Homogeneous Lagrangian. Expression in space time
- 4.5. The Hamilton equations
- 4.6. First integral by using the Noether theorem
- 4.7. Re-injection of a partial result
- 4.8. The Maupertuis principle
- 5. Jacobi's Integration Method
- 5.1. Canonical transformations
- 5.2. The Jacobi method
- 5.3. The material point in various systems of representation
- 5.4. Case of the Liouville integrability
- 5.5. A specific change of canonical variables
- 5.6. Multi-periodic systems. Action variables
- 6. Spaces of Mechanics
- Poisson Brackets
- 6.1. Spaces in analytical mechanics
- 6.2. Dynamical variables
- Poisson brackets
- 6.3. Poisson bracket of two dynamical variables
- 6.4. Canonical transformations
- 6.5. Remark on the symplectic scalar product
- PART 3: Properties of Mechanical Systems
- 7. Properties of Phase Space
- 7.1. Flow of a dynamical system
- 7.2. The Liouville theorem
- 7.3. The Poincar�e recurrence theorem
- 8. Oscillations and Small Motions of Mechanical Systems
- 8.1. Preliminary remarks
- 8.2. The Weierstrass discussion
- 8.3. Equilibrium position of an autonomous differential equation
- 8.4. Stability of equilibrium positions of an autonomous differential equation
- 8.5. A necessary condition of stability
- 8.6. Linearization of a differential equation
- 8.7. Behavior of eigenfrequencies
- 8.8. Perturbed equation associated with linear differential equation
- 9. The Stability of Periodic Systems