Cargando…

Plasticity of metallic materials : modeling and applications to forming /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cazacu, Oana
Otros Autores: Revil-Baudard, Benoit
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Colección:Elsevier Series on Plasticity of Materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Plasticity of Metallic Materials
  • Plasticity of Metallic Materials
  • Copyright
  • Contents
  • Preface
  • 1
  • Constitutive framework
  • 1.1 Introduction
  • 1.2 Historical notes on the theory of plasticity
  • 1.3 Ideal plasticity
  • 1.3.1 Governing equations for elastic-plastic work-hardening materials
  • Kinematic hardening
  • 1.4 Time-integration algorithm for stress-based elastic/plastic constitutive models
  • References
  • 2
  • Yield criteria for isotropic materials
  • 2.1 General mathematical form of the yield function of an isotropic material
  • 2.2 Yield criterion of von Mises
  • 2.3 Tresca yield criterion
  • Strain-rate-based potential associated to Tresca stress potential
  • 2.4 Yield criteria depending on J2 and J3
  • 2.4.1 Drucker (1949) yield criterion
  • 2.4.2 Cazacu (2018) yield criterion
  • 2.5 Non-quadratic isotropic yield criteria in terms of the eigenvalues of the stress deviator
  • 2.5.1 Hershey-Hosford and Karafillis-Boyce isotropic criteria
  • 2.5.2 Explicit expressions of the Hershey-Hosford and Karafillis-Boyce yield functions in terms of stress invariants
  • 2.6 Influence of the yielding characteristics on the size of the plastic zone near a crack in a thin sheet loaded in tension
  • 2.6.1 Statement of the problem and determination of the elastic stress field
  • 2.6.2 Plastic zone in front of a crack
  • 2.6.3 Analytical expression for the size of the plastic zone for material with yielding described by the Tresca yield criterion
  • 2.6.4 Analytic expression for the size of the plastic zone for materials with yielding described by the von Mises yield criterion
  • 2.7 Yield criteria for fully dense isotropic metallic materials showing asymmetry between tension and compression
  • 2.7.1 Cazacu and Barlat (2004) criterion
  • Convexity of the Cazacu and Barlat (2004) yield criterion
  • 2.7.2 Cazacu et al. (2006) isotropic yield criterion
  • 2.7.3 Influence of tension-compression asymmetry in yielding on the onset of plastic deformation for a hollow sphere subject to i ...
  • References
  • 3
  • Yield criteria for anisotropic materials
  • 3.1 Material symmetries and invariance requirements
  • 3.1.1 Material symmetries
  • Group property of the symmetry transformations
  • Crystal symmetries
  • 3.1.2 Invariance requirements for yield functions
  • 3.2 Generalized invariants approach
  • 3.2.1 Orthotropic invariants
  • 3.2.1.1 Expression of J2 orthotropic
  • 3.2.1.2 J3 orthotropic
  • 3.2.2 Transversely isotropic invariants
  • 3.2.2.1 J2 transversely isotropic
  • 3.2.2.2 J3 transversely isotropic
  • 3.2.3 Cubic invariants
  • 3.2.3.1 J2 cubic
  • 3.2.3.2 Extension of J3 for the tetratoidal and diploidal crystal classes
  • 3.2.4 Linear transformation approach
  • 3.3 Yield criteria for single crystals