Plasticity of metallic materials : modeling and applications to forming /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2021.
|
Colección: | Elsevier Series on Plasticity of Materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Plasticity of Metallic Materials
- Plasticity of Metallic Materials
- Copyright
- Contents
- Preface
- 1
- Constitutive framework
- 1.1 Introduction
- 1.2 Historical notes on the theory of plasticity
- 1.3 Ideal plasticity
- 1.3.1 Governing equations for elastic-plastic work-hardening materials
- Kinematic hardening
- 1.4 Time-integration algorithm for stress-based elastic/plastic constitutive models
- References
- 2
- Yield criteria for isotropic materials
- 2.1 General mathematical form of the yield function of an isotropic material
- 2.2 Yield criterion of von Mises
- 2.3 Tresca yield criterion
- Strain-rate-based potential associated to Tresca stress potential
- 2.4 Yield criteria depending on J2 and J3
- 2.4.1 Drucker (1949) yield criterion
- 2.4.2 Cazacu (2018) yield criterion
- 2.5 Non-quadratic isotropic yield criteria in terms of the eigenvalues of the stress deviator
- 2.5.1 Hershey-Hosford and Karafillis-Boyce isotropic criteria
- 2.5.2 Explicit expressions of the Hershey-Hosford and Karafillis-Boyce yield functions in terms of stress invariants
- 2.6 Influence of the yielding characteristics on the size of the plastic zone near a crack in a thin sheet loaded in tension
- 2.6.1 Statement of the problem and determination of the elastic stress field
- 2.6.2 Plastic zone in front of a crack
- 2.6.3 Analytical expression for the size of the plastic zone for material with yielding described by the Tresca yield criterion
- 2.6.4 Analytic expression for the size of the plastic zone for materials with yielding described by the von Mises yield criterion
- 2.7 Yield criteria for fully dense isotropic metallic materials showing asymmetry between tension and compression
- 2.7.1 Cazacu and Barlat (2004) criterion
- Convexity of the Cazacu and Barlat (2004) yield criterion
- 2.7.2 Cazacu et al. (2006) isotropic yield criterion
- 2.7.3 Influence of tension-compression asymmetry in yielding on the onset of plastic deformation for a hollow sphere subject to i ...
- References
- 3
- Yield criteria for anisotropic materials
- 3.1 Material symmetries and invariance requirements
- 3.1.1 Material symmetries
- Group property of the symmetry transformations
- Crystal symmetries
- 3.1.2 Invariance requirements for yield functions
- 3.2 Generalized invariants approach
- 3.2.1 Orthotropic invariants
- 3.2.1.1 Expression of J2 orthotropic
- 3.2.1.2 J3 orthotropic
- 3.2.2 Transversely isotropic invariants
- 3.2.2.1 J2 transversely isotropic
- 3.2.2.2 J3 transversely isotropic
- 3.2.3 Cubic invariants
- 3.2.3.1 J2 cubic
- 3.2.3.2 Extension of J3 for the tetratoidal and diploidal crystal classes
- 3.2.4 Linear transformation approach
- 3.3 Yield criteria for single crystals