Cargando…

Plasticity of metallic materials : modeling and applications to forming /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cazacu, Oana
Otros Autores: Revil-Baudard, Benoit
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Colección:Elsevier Series on Plasticity of Materials.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1224365354
003 OCoLC
005 20231120010521.0
006 m o d
007 cr un|---aucuu
008 201128s2021 ne o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d EBLCP  |d OPELS  |d OCLCF  |d OCLCO  |d ABC  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
019 |a 1224200281 
020 |a 9780128179857 
020 |a 0128179856 
020 |z 9780128179840 
035 |a (OCoLC)1224365354  |z (OCoLC)1224200281 
050 4 |a TA460 
082 0 4 |a 620.1633 
100 1 |a Cazacu, Oana. 
245 1 0 |a Plasticity of metallic materials :  |b modeling and applications to forming /  |c Oana Cazacu and Benoit Revil-Baudard. 
260 |a Amsterdam :  |b Elsevier,  |c 2021. 
300 |a 1 online resource (562 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Elsevier Series on Plasticity of Materials 
588 0 |a Print version record. 
505 0 |a Front Cover -- Plasticity of Metallic Materials -- Plasticity of Metallic Materials -- Copyright -- Contents -- Preface -- 1 -- Constitutive framework -- 1.1 Introduction -- 1.2 Historical notes on the theory of plasticity -- 1.3 Ideal plasticity -- 1.3.1 Governing equations for elastic-plastic work-hardening materials -- Kinematic hardening -- 1.4 Time-integration algorithm for stress-based elastic/plastic constitutive models -- References -- 2 -- Yield criteria for isotropic materials -- 2.1 General mathematical form of the yield function of an isotropic material 
505 8 |a 2.2 Yield criterion of von Mises -- 2.3 Tresca yield criterion -- Strain-rate-based potential associated to Tresca stress potential -- 2.4 Yield criteria depending on J2 and J3 -- 2.4.1 Drucker (1949) yield criterion -- 2.4.2 Cazacu (2018) yield criterion -- 2.5 Non-quadratic isotropic yield criteria in terms of the eigenvalues of the stress deviator -- 2.5.1 Hershey-Hosford and Karafillis-Boyce isotropic criteria -- 2.5.2 Explicit expressions of the Hershey-Hosford and Karafillis-Boyce yield functions in terms of stress invariants 
505 8 |a 2.6 Influence of the yielding characteristics on the size of the plastic zone near a crack in a thin sheet loaded in tension -- 2.6.1 Statement of the problem and determination of the elastic stress field -- 2.6.2 Plastic zone in front of a crack -- 2.6.3 Analytical expression for the size of the plastic zone for material with yielding described by the Tresca yield criterion -- 2.6.4 Analytic expression for the size of the plastic zone for materials with yielding described by the von Mises yield criterion 
505 8 |a 2.7 Yield criteria for fully dense isotropic metallic materials showing asymmetry between tension and compression -- 2.7.1 Cazacu and Barlat (2004) criterion -- Convexity of the Cazacu and Barlat (2004) yield criterion -- 2.7.2 Cazacu et al. (2006) isotropic yield criterion -- 2.7.3 Influence of tension-compression asymmetry in yielding on the onset of plastic deformation for a hollow sphere subject to i ... -- References -- 3 -- Yield criteria for anisotropic materials -- 3.1 Material symmetries and invariance requirements -- 3.1.1 Material symmetries 
505 8 |a Group property of the symmetry transformations -- Crystal symmetries -- 3.1.2 Invariance requirements for yield functions -- 3.2 Generalized invariants approach -- 3.2.1 Orthotropic invariants -- 3.2.1.1 Expression of J2 orthotropic -- 3.2.1.2 J3 orthotropic -- 3.2.2 Transversely isotropic invariants -- 3.2.2.1 J2 transversely isotropic -- 3.2.2.2 J3 transversely isotropic -- 3.2.3 Cubic invariants -- 3.2.3.1 J2 cubic -- 3.2.3.2 Extension of J3 for the tetratoidal and diploidal crystal classes -- 3.2.4 Linear transformation approach -- 3.3 Yield criteria for single crystals 
650 0 |a Metals  |x Plastic properties. 
650 6 |a M�etaux  |x Plasticit�e.  |0 (CaQQLa)201-0019891 
650 7 |a Metals  |x Plastic properties.  |2 fast  |0 (OCoLC)fst01018175 
700 1 |a Revil-Baudard, Benoit. 
776 0 8 |i Print version:  |a Cazacu, Oana.  |t Plasticity of Metallic Materials : Modeling and Applications to Forming.  |d San Diego : Elsevier, �2020  |z 9780128179840 
830 0 |a Elsevier Series on Plasticity of Materials. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128179840  |z Texto completo