Cargando…

Solid state physics. Volume 71 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Stamps, Robert L. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Solid State Physics
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Orbitronics with uniform and nonuniform magnetic structures
  • 1. Introduction
  • 2. Orbitronics with uniform magnetization: Ferromagnet and antiferromagnet
  • 2.1. Theoretical studies
  • 2.2. Heavy metal
  • 2.3. Topological insulator
  • 2.4. Antiferromagnet
  • 2.5. Spin-orbitronics in two dimensions
  • 2.6. Future perspective
  • 3. Orbitronics with nonuniform magnetization: The emergence of chiral and topological orbital magnetism
  • 3.1. Real space topology
  • 3.2. Momentum-space topology
  • 3.3. Conclusion
  • Acknowledgments
  • References
  • Chapter Two: Roadmap for photon-magnon coupling and its applications
  • 1. Photon-magnon coupling (PMC)
  • 1.1. Concepts of PMC
  • 1.2. Advancement in PMC
  • 1.3. Dissipative PMC
  • 1.4. Nonlinear effects in PMC
  • 2. Emerging research based on PMC
  • 2.1. Cavity spintronics
  • 2.2. Cavity magnomechanics
  • 2.3. Cavity optomagnonics
  • 2.4. Quantum magnonics
  • 3. Prospective applications of PMC
  • 3.1. Quantum information processing
  • 3.2. Quantum sensing of magnons
  • 3.3. Non-reciprocity and uni-directional transmission
  • 4. Prospective future directions of PMC
  • 4.1. New materials for PMC
  • 4.2. Coupling of antiferromagnetic magnons with photons
  • 4.3. Broadband PMC
  • 4.4. Expanding the horizon for development of neuromorphic computing
  • 4.5. PMC-based metamaterials
  • 5. Conclusion
  • Acknowledgments
  • References
  • Chapter Three: Using polarized neutron reflectometry to resolve effects of light elements and ion exposure on magnetization
  • 1. Introduction
  • 2. Characterization methods and PNR facilities
  • 2.1. General experimental methods
  • 3. In situ measurements of functional properties of magnetic hydrogen sensors
  • 3.1. In situ ferromagnetic resonance coupled with PNR
  • 3.2. Example results
  • 4. Ion beam modification of magnetic thin films
  • 4.1. Doping and nanocluster growth using keV-scale transition metal ion beams
  • 4.2. Selective modification of magnetic interfaces using low-energy ion beams of light elements
  • 4.3. Driving magnetic phase transitions using keV-scale He-ions
  • 5. Off specular scattering studies
  • 5.1. Diffuse off-specular scattering from roughness and fluctuations
  • 5.2. Off-specular Bragg diffraction from regular patterns
  • 6. Conclusion and future perspectives
  • Acknowledgments
  • References
  • Chapter Four: The 2020 roadmap for spin cavitronics
  • 1. Status
  • 2. Current and future challenges
  • 3. Concluding remarks
  • References