Handbook of deep learning in biomedical engineering : techniques and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- HANDBOOK OF DEEP LEARNING IN BIOMEDICAL ENGINEERING
- HANDBOOK OF DEEP LEARNING IN BIOMEDICAL ENGINEERING
- Copyright
- Contents
- Contributors
- About the editors
- Preface
- Key features
- About the book
- 1
- Congruence of deep learning in biomedical engineering: future prospects and challenges
- 1. Introduction
- 1.1 SqueezeNet (image classification)
- 1.1.1 Strategies of architectural design
- 2. Fire module
- 3. Background study
- 3.1 Need of security
- 3.1.1 Types of security methods
- 3.1.1.1 Steganography
- 3.1.1.2 Watermarking
- 3.1.1.3 Cryptography
- 3.2 Advantages of steganography over cryptography
- 3.2.1 Resolution of steganography
- 3.2.2 Types of steganography
- 3.2.3 Image steganography
- 3.2.4 Image steganography method
- 3.3 Steganography techniques
- 3.3.1 Spatial domain technique
- 3.3.1.1 Least significant bit technique
- 3.3.2 Transform domain technique
- 3.4 Advantages of transform domain over spatial domain
- 3.5 Related study
- 3.5.1 DWT based
- 3.5.2 IWT based
- 3.6 Advantages of IWT over DWT
- 4. Study of various types of model
- 5. Proposed method by the authors
- 5.1 2D Haar wavelet transform
- 5.2 Huffman encoding technique
- 5.3 Embedding algorithm
- 6. Conclusion and future work
- References
- 2
- Deep convolutional neural network in medical image processing
- 1. Introduction
- 2. Medical image analysis
- 2.1 Segmentation
- 2.2 Detection or diagnosis by computer-aided system
- 2.3 Detection and classification of abnormality
- 2.4 Registration
- 3. Convolutional neural network and its architectures
- 3.1 Architectures of deep convolutional neural network
- 3.1.1 General classification architectures
- 3.1.2 Multistream architectures
- 3.1.3 Segmentation architectures
- 4. Application of deep convolutional neural network in medical image analysis
- 4.1 Brain
- 4.2 Eye
- 4.3 Breast
- 4.4 Chest
- 4.5 Cardiac
- 4.6 Abdomen
- 5. Critical discussion: inferences for future work and limitations
- 6. Conclusion
- References
- 3
- Application, algorithm, tools directly related to deep learning
- 1. Introduction
- 2. Tools used in deep learning
- 2.1 TensorFlow
- 2.1.1 Tensor data structure
- 2.1.2 Rank
- 2.1.3 Shape
- 2.1.4 Type
- 2.1.5 One-dimensional Tensor
- 2.1.6 Two-dimensional Tensor
- 2.2 Keras
- 2.2.1 Backend in Keras
- 2.2.2 Installing keras: Amazon Web Service
- 2.3 CAFFE
- 2.3.1 The main features of CAFFE
- 2.4 Torch tool
- 2.5 Theano
- 3. Algorithms
- 3.1 Deep belief networks
- 3.1.1 Architecture of Deep belief network
- 3.1.2 Working of deep belief network
- 3.2 Convolutional neural network
- 3.2.1 Input image
- 3.2.2 Convolution layer-the kernel
- 3.3 Recurrent neural network
- 3.3.1 How recurrent neural network works
- 3.4 Long short-term memory networks
- 3.4.1 Structure of long short-term memory
- 3.5 Stacked autoencoders
- 3.6 Deep Boltzmann Machine
- 4. Applications of deep learning