Cargando…

Handbook of deep learning in biomedical engineering : techniques and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Balas, Valentina Emilia (Editor ), Mishra, Brojo Kishore, 1979- (Editor ), Kumar, Raghvendra, 1987- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1223025978
003 OCoLC
005 20231120010520.0
006 m o d
007 cr |||||||||||
008 200910s2021 enka fo 000 0 eng d
040 |a UKAHL  |b eng  |e rda  |e pn  |c UKAHL  |d EBLCP  |d OCLCO  |d OPELS  |d OCLCO  |d UPM  |d OCLCF  |d VRC  |d OCLCO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO 
020 |a 9780128230473  |q (e-book) 
020 |a 0128230479  |q (e-book) 
020 |z 9780128230145  |q (print) 
035 |a (OCoLC)1223025978 
050 4 |a R859.7.A78 
082 0 4 |a 610.285631  |2 23 
245 0 0 |a Handbook of deep learning in biomedical engineering :  |b techniques and applications /  |c edited by Valentina E. Balas, Brojo Kishore Mishra, Raghvendra Kumar. 
264 1 |a London :  |b Academic Press,  |c 2021. 
300 |a 1 online resource :  |b illustrations (black and white, and colour) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover -- HANDBOOK OF DEEP LEARNING IN BIOMEDICAL ENGINEERING -- HANDBOOK OF DEEP LEARNING IN BIOMEDICAL ENGINEERING -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Key features -- About the book -- 1 -- Congruence of deep learning in biomedical engineering: future prospects and challenges -- 1. Introduction -- 1.1 SqueezeNet (image classification) -- 1.1.1 Strategies of architectural design -- 2. Fire module -- 3. Background study -- 3.1 Need of security -- 3.1.1 Types of security methods -- 3.1.1.1 Steganography -- 3.1.1.2 Watermarking -- 3.1.1.3 Cryptography 
505 8 |a 3.2 Advantages of steganography over cryptography -- 3.2.1 Resolution of steganography -- 3.2.2 Types of steganography -- 3.2.3 Image steganography -- 3.2.4 Image steganography method -- 3.3 Steganography techniques -- 3.3.1 Spatial domain technique -- 3.3.1.1 Least significant bit technique -- 3.3.2 Transform domain technique -- 3.4 Advantages of transform domain over spatial domain -- 3.5 Related study -- 3.5.1 DWT based -- 3.5.2 IWT based -- 3.6 Advantages of IWT over DWT -- 4. Study of various types of model -- 5. Proposed method by the authors -- 5.1 2D Haar wavelet transform 
505 8 |a 5.2 Huffman encoding technique -- 5.3 Embedding algorithm -- 6. Conclusion and future work -- References -- 2 -- Deep convolutional neural network in medical image processing -- 1. Introduction -- 2. Medical image analysis -- 2.1 Segmentation -- 2.2 Detection or diagnosis by computer-aided system -- 2.3 Detection and classification of abnormality -- 2.4 Registration -- 3. Convolutional neural network and its architectures -- 3.1 Architectures of deep convolutional neural network -- 3.1.1 General classification architectures -- 3.1.2 Multistream architectures -- 3.1.3 Segmentation architectures 
505 8 |a 4. Application of deep convolutional neural network in medical image analysis -- 4.1 Brain -- 4.2 Eye -- 4.3 Breast -- 4.4 Chest -- 4.5 Cardiac -- 4.6 Abdomen -- 5. Critical discussion: inferences for future work and limitations -- 6. Conclusion -- References -- 3 -- Application, algorithm, tools directly related to deep learning -- 1. Introduction -- 2. Tools used in deep learning -- 2.1 TensorFlow -- 2.1.1 Tensor data structure -- 2.1.2 Rank -- 2.1.3 Shape -- 2.1.4 Type -- 2.1.5 One-dimensional Tensor -- 2.1.6 Two-dimensional Tensor -- 2.2 Keras -- 2.2.1 Backend in Keras 
505 8 |a 2.2.2 Installing keras: Amazon Web Service -- 2.3 CAFFE -- 2.3.1 The main features of CAFFE -- 2.4 Torch tool -- 2.5 Theano -- 3. Algorithms -- 3.1 Deep belief networks -- 3.1.1 Architecture of Deep belief network -- 3.1.2 Working of deep belief network -- 3.2 Convolutional neural network -- 3.2.1 Input image -- 3.2.2 Convolution layer-the kernel -- 3.3 Recurrent neural network -- 3.3.1 How recurrent neural network works -- 3.4 Long short-term memory networks -- 3.4.1 Structure of long short-term memory -- 3.5 Stacked autoencoders -- 3.6 Deep Boltzmann Machine -- 4. Applications of deep learning 
650 0 |a Artificial intelligence  |x Medical applications. 
650 0 |a Biomedical engineering  |x Information technology. 
650 0 |a Machine learning. 
650 2 |a Machine Learning  |0 (DNLM)D000069550 
650 6 |a Intelligence artificielle en m�edecine.  |0 (CaQQLa)201-0180593 
650 6 |a G�enie biom�edical  |0 (CaQQLa)201-0021888  |x Technologie de l'information.  |0 (CaQQLa)201-0379284 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a Artificial intelligence  |x Medical applications  |2 fast  |0 (OCoLC)fst00817267 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Balas, Valentina Emilia,  |e editor. 
700 1 |a Mishra, Brojo Kishore,  |d 1979-  |e editor. 
700 1 |a Kumar, Raghvendra,  |d 1987-  |e editor. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128230145  |z Texto completo