Cargando…

A Practical Approach to Fracture Mechanics

A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and exper...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gonz�alez-Vel�azquez, Jorge Luis
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • A Practical Approach to Fracture Mechanics
  • A Practical Approach to Fracture Mechanics
  • Copyright
  • Contents
  • Preface
  • 1
  • General concepts of mechanical behavior and fracture
  • 1.1 Fracture mechanics field of application
  • 1.2 Definition of stress and strain
  • 1.3 Mechanical behavior under tension
  • 1.4 The stress tensor
  • 1.5 The Mohr's circle
  • 1.6 Yield criteria
  • 1.7 Stress concentration
  • 1.8 Definitions and basic concepts of fracture
  • 1.9 Object and field of application of fracture mechanics
  • 2
  • Linear elastic fracture mechanics
  • 2.1 Cohesive strength
  • 2.2 The Griffith criterion
  • 2.3 The stress intensity factor (Irwin's analysis)
  • 2.4 Solutions of the stress intensity factor
  • 2.5 Experimental determination of the stress intensity factor
  • 2.6 Determination of the stress intensity factor by the finite element method
  • 2.7 The plastic zone
  • 2.8 The crack tip opening displacement
  • 3
  • The energy criterion and fracture toughness
  • 3.1 The energy criterion
  • 3.2 The R-curve
  • 3.3 Plane strain fracture toughness
  • 3.4 Plane strain fracture toughness testing (KIC)
  • 3.5 Effect of size on fracture toughness
  • 3.6 Charpy impact energy fracture toughness correlations
  • 3.7 Dynamic fracture and crack arrest
  • 4
  • Elastic-plastic fracture mechanics
  • 4.1 Elastic-plastic fracture and the J-integral
  • 4.2 JIC testing
  • 4.3 Use of the J-integral as a fracture parameter
  • 4.4 The crack-tip opening displacement as fracture parameter
  • 4.5 The two-parameter criterion
  • 5
  • Fracture resistance of engineering materials
  • 5.1 Remaining strength
  • 5.2 Materials selection for fracture resistance
  • 5.3 Material properties charts
  • 5.4 Failure analysis using fracture mechanics
  • 5.5 Reinforcement of cracked structures
  • 5.6 The leak-before-break condition
  • 6
  • Fatigue and environmentally assisted crack propagation
  • 6.1 Fatigue crack growth and Paris's law
  • 6.2 Effect of the load ratio on the FCG rate
  • 6.3 Fatigue crack closure
  • 6.4 Effect of the environment on fatigue crack growth
  • 6.5 Effect of variable loads on fatigue crack growth
  • 6.6 Effect of a single overload on fatigue crack growth
  • 6.7 Fatigue cracks emanating from notches and holes
  • 6.8 Stress-corrosion cracking
  • 6.9 Creep crack growth
  • 6.10 Crack growth by absorbed hydrogen
  • 7
  • Structural integrity
  • 7.1 In-service damage of structural components
  • 7.2 General aspects of structural integrity
  • 7.3 Remaining life of cracked components
  • 7.4 A methodology for the estimation of remaining life
  • 7.5 Structural integrity assessment procedure
  • 7.6 Example of a structural integrity assessment
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • Y
  • Back Cover