Cargando…

Heterostructured photocatalysts for solar energy conversion /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ghosh, Srabanti
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Colección:Solar cell engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Heterostructured Photocatalysts for Solar Energy Conversion
  • Heterostructured Photocatalysts for Solar Energy Conversion
  • Copyright
  • Contents
  • Contributors
  • About editor
  • Preface
  • Acknowledgments
  • 1
  • Heterogeneous photocatalysis: Z-scheme based heterostructures
  • 1.1 Introduction
  • 1.2 Types of heterostructures
  • 1.3 Z-scheme heterostructures
  • 1.3.1 Application of Z-scheme heterostructure in photocatalysts
  • 1.3.1.1 Water splitting
  • 1.3.1.2 Photocatalytic removal of pollutants
  • 1.3.1.3 Photocatalytic CO2 reduction
  • 1.4 Conclusion
  • References
  • 2
  • Atomic and electronic structure of direct Z-scheme photocatalyst: from fundamentals to applications
  • 2.1 Introduction
  • 2.2 What is direct Z-scheme photocatalyst?
  • 2.3 Advantages
  • 2.3.1 Spatial separation of reduction and oxidation site
  • 2.3.2 Acceleration of charge carrier migration
  • 2.3.3 Optimization of REDOX ability
  • 2.3.4 Improvement in photostability
  • 2.4 Applications
  • 2.4.1 Photocatalytic hydrogen production
  • 2.4.2 Photocatalytic CO2 reduction
  • 2.4.3 Photocatalytic dinitrogen fixation
  • 2.4.4 Photocatalytic bacteria disinfection
  • 2.4.5 Photocatalytic dye degradation
  • 2.5 Conclusion and future perspectives
  • Acknowledgments
  • References
  • 3
  • Photocatalytic hydrogen generation using Z-scheme heterostructures through water reduction
  • 3.1 Introduction
  • 3.2 Fundamentals of photocatalytic water splitting
  • 3.3 Natural Z-scheme photosynthesis
  • 3.4 Artificial Z-scheme water splitting
  • 3.4.1 Liquid phase Z-scheme water splitting
  • 3.4.1.1 IO3-/I- Redox shuttle
  • 3.4.1.2 Fe3+/Fe2+ redox shuttle
  • 3.4.2 All-solid-state Z-scheme water splitting
  • 3.4.2.1 Metals
  • 3.4.2.2 Graphene oxide
  • 3.4.2.3 Conductive carbon
  • 3.4.3 Direct Z-scheme water splitting
  • 3.5 Photocatalysts for half-reactions
  • 3.5.1 Oxygen evolution
  • 3.5.2 Hydrogen evolution
  • 3.6 Conventional vs. Z-scheme water splitting in heterostructures
  • 3.7 Conclusions
  • References
  • 4
  • Photocatalytic Z-scheme water splitting
  • 4.1 Introduction
  • 4.2 Z-scheme water splitting with redox mediators
  • 4.2.1 Development of HEP in redox-mediator-based Z-scheme water splitting
  • 4.2.1.1 Cation-doped oxide photocatalysts
  • 4.2.1.2 (Oxy)nitride photocatalysts
  • 4.2.1.3 (Oxy)sulfide photocatalysts
  • 4.2.1.4 Dye-sensitized photocatalysts
  • 4.2.2 Development of OEP in redox mediator-based Z-scheme water splitting
  • 4.2.2.1 WO3 photocatalyst
  • 4.2.2.2 BiVO4 photocatalyst
  • 4.2.2.3 (Oxy)nitride photocatalysts
  • 4.2.2.4 Oxyhalide photocatalysts
  • 4.2.2.5 Photosystem II (PSII) enzyme photocatalysts
  • 4.2.3 Development of redox mediator in Z-scheme water splitting
  • 4.3 Z-scheme water splitting without redox mediators
  • 4.3.1 Redox-mediator-free Z-scheme (direct Z-scheme)
  • 4.3.2 Solid-state mediators
  • 4.3.3 Particulate photocatalytic sheet
  • 4.4 Conclusion
  • References
  • 5
  • Z-scheme-based heterostructure photocatalysts for organic pollutant degradation