|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1202462641 |
003 |
OCoLC |
005 |
20231120010516.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
201031s2021 ne o 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OPELS
|d OCLCO
|d OCLCF
|d N$T
|d S2H
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1200198079
|a 1202477578
|
020 |
|
|
|a 0128200731
|
020 |
|
|
|a 9780128200735
|q (electronic bk.)
|
020 |
|
|
|z 9780128200728
|
020 |
|
|
|z 0128200723
|
035 |
|
|
|a (OCoLC)1202462641
|z (OCoLC)1200198079
|z (OCoLC)1202477578
|
050 |
|
4 |
|a TJ810
|
082 |
0 |
4 |
|a 621.47
|2 23
|
245 |
0 |
0 |
|a Heterostructured photocatalysts for solar energy conversion /
|c edited by Srabanti Ghosh.
|
260 |
|
|
|a Amsterdam :
|b Elsevier,
|c 2021.
|
300 |
|
|
|a 1 online resource (386 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Solar cell engineering
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover -- Heterostructured Photocatalysts for Solar Energy Conversion -- Heterostructured Photocatalysts for Solar Energy Conversion -- Copyright -- Contents -- Contributors -- About editor -- Preface -- Acknowledgments -- 1 -- Heterogeneous photocatalysis: Z-scheme based heterostructures -- 1.1 Introduction -- 1.2 Types of heterostructures -- 1.3 Z-scheme heterostructures -- 1.3.1 Application of Z-scheme heterostructure in photocatalysts -- 1.3.1.1 Water splitting -- 1.3.1.2 Photocatalytic removal of pollutants -- 1.3.1.3 Photocatalytic CO2 reduction -- 1.4 Conclusion -- References
|
505 |
8 |
|
|a 2 -- Atomic and electronic structure of direct Z-scheme photocatalyst: from fundamentals to applications -- 2.1 Introduction -- 2.2 What is direct Z-scheme photocatalyst? -- 2.3 Advantages -- 2.3.1 Spatial separation of reduction and oxidation site -- 2.3.2 Acceleration of charge carrier migration -- 2.3.3 Optimization of REDOX ability -- 2.3.4 Improvement in photostability -- 2.4 Applications -- 2.4.1 Photocatalytic hydrogen production -- 2.4.2 Photocatalytic CO2 reduction -- 2.4.3 Photocatalytic dinitrogen fixation -- 2.4.4 Photocatalytic bacteria disinfection
|
505 |
8 |
|
|a 2.4.5 Photocatalytic dye degradation -- 2.5 Conclusion and future perspectives -- Acknowledgments -- References -- 3 -- Photocatalytic hydrogen generation using Z-scheme heterostructures through water reduction -- 3.1 Introduction -- 3.2 Fundamentals of photocatalytic water splitting -- 3.3 Natural Z-scheme photosynthesis -- 3.4 Artificial Z-scheme water splitting -- 3.4.1 Liquid phase Z-scheme water splitting -- 3.4.1.1 IO3-/I- Redox shuttle -- 3.4.1.2 Fe3+/Fe2+ redox shuttle -- 3.4.2 All-solid-state Z-scheme water splitting -- 3.4.2.1 Metals -- 3.4.2.2 Graphene oxide -- 3.4.2.3 Conductive carbon
|
505 |
8 |
|
|a 3.4.3 Direct Z-scheme water splitting -- 3.5 Photocatalysts for half-reactions -- 3.5.1 Oxygen evolution -- 3.5.2 Hydrogen evolution -- 3.6 Conventional vs. Z-scheme water splitting in heterostructures -- 3.7 Conclusions -- References -- 4 -- Photocatalytic Z-scheme water splitting -- 4.1 Introduction -- 4.2 Z-scheme water splitting with redox mediators -- 4.2.1 Development of HEP in redox-mediator-based Z-scheme water splitting -- 4.2.1.1 Cation-doped oxide photocatalysts -- 4.2.1.2 (Oxy)nitride photocatalysts -- 4.2.1.3 (Oxy)sulfide photocatalysts -- 4.2.1.4 Dye-sensitized photocatalysts
|
505 |
8 |
|
|a 4.2.2 Development of OEP in redox mediator-based Z-scheme water splitting -- 4.2.2.1 WO3 photocatalyst -- 4.2.2.2 BiVO4 photocatalyst -- 4.2.2.3 (Oxy)nitride photocatalysts -- 4.2.2.4 Oxyhalide photocatalysts -- 4.2.2.5 Photosystem II (PSII) enzyme photocatalysts -- 4.2.3 Development of redox mediator in Z-scheme water splitting -- 4.3 Z-scheme water splitting without redox mediators -- 4.3.1 Redox-mediator-free Z-scheme (direct Z-scheme) -- 4.3.2 Solid-state mediators -- 4.3.3 Particulate photocatalytic sheet -- 4.4 Conclusion -- References
|
505 |
8 |
|
|a 5 -- Z-scheme-based heterostructure photocatalysts for organic pollutant degradation
|
500 |
|
|
|a Includes index.
|
650 |
|
0 |
|a Solar energy.
|
650 |
|
0 |
|a Energy conversion.
|
650 |
|
0 |
|a Photocatalysis.
|
650 |
|
2 |
|a Solar Energy
|0 (DNLM)D012993
|
650 |
|
6 |
|a �Energie solaire.
|0 (CaQQLa)201-0029679
|
650 |
|
6 |
|a �Energie
|x Conversion.
|0 (CaQQLa)201-0385643
|
650 |
|
6 |
|a Photocatalyse.
|0 (CaQQLa)201-0247110
|
650 |
|
7 |
|a solar power.
|2 aat
|0 (CStmoGRI)aat300055225
|
650 |
|
7 |
|a Energy conversion
|2 fast
|0 (OCoLC)fst00910026
|
650 |
|
7 |
|a Photocatalysis
|2 fast
|0 (OCoLC)fst01061500
|
650 |
|
7 |
|a Solar energy
|2 fast
|0 (OCoLC)fst01124984
|
700 |
1 |
|
|a Ghosh, Srabanti.
|
776 |
0 |
8 |
|i Print version:
|a Ghosh, Srabanti.
|t Heterostructured Photocatalysts for Solar Energy Conversion.
|d San Diego : Elsevier, �2020
|z 9780128200728
|
830 |
|
0 |
|a Solar cell engineering.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128200728
|z Texto completo
|