Cargando…

Biology of aminoacyl-tRNA synthetases/

Biology of Aminoacyl-tRNA Synthetases, Volume 48 in The Enzymes series, highlights new advances in the field, with this new volume presenting interesting chapters on A narrative about our work on the endless frontier of editing, The puzzling evolution of aminoacyl-tRNA synthetases, Structural basis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ribas de Pouplana, Llu�is (Editor ), Kaguni, Laurie (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2020.
Edición:First edition.
Colección:Enzymes ; v. 48.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Biology of Aminoacyl-tRNA Synthetases
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: The endless frontier of tRNA synthetases
  • 1. aaRSs establish the genetic code
  • 2. Problems when simplicity is not quite enough
  • 3. Orthogonal functions created from pieces and decorations
  • 4. Functions and diseases linked to tRNA synthetases
  • 5. Therapeutics with splice variants
  • 6. The endless frontier
  • Acknowledgements
  • Chapter Two: The evolution of aminoacyl-tRNA synthetases: From dawn to LUCA
  • 1. Introduction
  • 2. The aaRS conundrum
  • 3. A temporal perspective for aaRS evolution
  • 3.1. Prebiotic biochemical period
  • 3.2. Prebiotic macromolecular period
  • 3.3. Pre-LUCA biological period
  • 3.4. Post-LUCA period
  • 4. Summary
  • Acknowledgments
  • References
  • Chapter Three: Putting amino acids onto tRNAs: The aminoacyl-tRNA synthetases as catalysts
  • 1. Introduction
  • 1.1. The reactions catalyzed by the AARSs
  • 1.2. Class-defining features of AARSs
  • 2. Mechanistic strategies used by the AARSs
  • 2.1. Rate-limiting step of aminoacylation
  • 2.2. Protein dynamics and induced fit
  • 2.3. Transition state stabilization
  • 2.4. Acid-base chemistry vs substrate-assisted catalysis in tRNA aminoacylation
  • 3. Metals in AARS-mediated catalysis
  • 3.1. Divalent metal cofactors facilitate amino acid activation
  • 3.2. CysRS and ThrRS each use an active site Zn cofactor for amino acid discrimination and catalysis
  • 3.3. Other examples of metal participation in AARS function
  • 4. Conclusion
  • References
  • Chapter Four: Trans-editing by aminoacyl-tRNA synthetase-like editing domains
  • 1. Introduction
  • 2. Proofreading by PheRS editing domain prevents m-Tyr and p-Tyr misincorporation
  • 2.1. Bacterial PheRS post-transfer editing machinery primarily prevents m-Tyr misincorporation
  • 2.2. Eukaryotic PheRS post-transfer editing machinery primarily targets p-Tyr-tRNA
  • 3. AlaRS editing domain and trans-editing factors ubiquitously prevent Ser and Gly misincorporation
  • 3.1. AlaRS editing domain deacylates Ser- and Gly-tRNA
  • 3.2. AlaXps are autonomous AlaRS editing domain homologs
  • 3.2.1. AlaX-S is likely the predecessor of AlaRS and ThrRS editing domains
  • 3.2.2. Mammalian AlaX-M trans-editing of Ser- and Gly-tRNA
  • 3.3. d-aminoacyl-tRNA deacylases prevent Gly misincorporation
  • 3.4. Animal-specific DTD edits Ala-tRNA (G4:U69) error unique to eukaryotes
  • 4. Functional convergence of distinct ThrRS editing domains prevent Ser and Ala misincorporation
  • 4.1. Oxidative stress regulates N2 domain hydrolysis of mischarged Ser-tRNA
  • 4.1.1. Zinc availability regulates trans-editing by ThrRS isoforms in cyanobacteria
  • 4.2. Post-transfer editing by eukaryotic ThrRS isoforms TARS, TARS2, and TARSL2
  • 4.3. Post-transfer editing by archaeal ThrRS is mediated by a DTD-like editing domain