Cargando…

Membrane biomechanics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Levitan, Irena, Trache, Andreea
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2020.
Colección:Current topics in membranes ; v. 86.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Membrane Biomechanics
  • Copyright
  • Contents
  • Contributors
  • Chapter One: Lipid bilayers: Phase behavior and nanomechanics
  • 1. Introduction
  • 2. Experimental approaches to study membrane mechanics
  • 2.1. Model systems: Supported vesicles layers (SVLs) and lipid bilayers (SLBs)
  • 2.2. Quartz crystal microbalance with dissipation monitoring (QCM-D)
  • 2.3. Atomic force microscopy (AFM)-based methodology
  • 3. Phase behavior and nanomechanics. From one-component membranes to higher complexity
  • 3.1. One-component membranes
  • 3.1.1. The gel and the fluid phase
  • 3.1.2. The thermal transition
  • 3.1.2.1. Main transition
  • 3.1.2.2. Pretransition
  • 3.2. Phase coexistence
  • 3.3. The role of cholesterol
  • 4. Connection between nanoscale measurements and thermodynamic descriptors of membranes
  • 5. Conclusions and future perspectives
  • Acknowledgments
  • Glossary of lipid acronyms
  • References
  • Chapter Two: Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions
  • 1. Introduction
  • 2. Health benefits of omega-3 polyunsaturated fatty acids
  • 3. Chemical structures of long-chain omega-3 polyunsaturated fatty acids
  • 4. Hypothesized mechanisms of action of omega-3 PUFAs on cardiovascular health
  • 4.1. Effects on atherosclerosis
  • 4.2. Effects on endothelial function
  • 4.3. Regulation of platelet function
  • 4.4. Antiarrhythmic effects
  • 4.5. Effects on triglyceride levels
  • 4.6. Anti-inflammatory effects
  • 5. Membrane modulatory effects of omega-3 PUFAs
  • 5.1. Computational methods
  • 5.2. Effects on bilayer membrane properties
  • 6. Conclusion
  • Acknowledgment
  • References
  • Chapter Three: Cell membrane mechanics and mechanosensory transduction
  • 1. Introduction
  • 2. Cell membrane mechanics
  • 2.1. Mechanical force and molecular features of the plasma membrane
  • 2.1.1. Basic concepts in mechanobiology
  • 2.1.2. Structure and function of cell membrane
  • 2.1.3. Cellular rheology and rheometry
  • 2.2. Methods for determination of mechanical properties of cellular membranes
  • 2.2.1. Choosing the right tool
  • 2.3. Single cell-force spectroscopy
  • 2.3.1. Atomic force microscopy (AFM)
  • 2.3.2. Optical tweezers
  • 2.3.3. Magnetic tweezers
  • 2.3.4. Traction force microscopy (TFM)
  • 2.3.5. Particle-tracking micro-rheology (PTM)
  • 2.3.6. Acoustic force spectroscopy (AFS)
  • 2.4. Cell membrane properties of organisms with and without cell wall
  • 2.4.1. Bacterial cell envelopes
  • 2.4.2. Animal cell membranes
  • 3. Mechanosensitive ion channels
  • 3.1. Major types of mechanosensitive ion channels
  • 3.2. Bacterial and archaeal MS channels
  • 3.2.1. MscL-like channels
  • 3.2.2. MscS-like channels
  • 3.3. MS channels of eukaryotes
  • 3.3.1. DEG/ENaC channels
  • 3.3.2. Two-pore domain K channels (K2P)
  • 3.3.3. Piezo channels
  • 3.3.4. TMC (transmembrane channel-like) proteins
  • 3.3.5. New channel candidates