Membrane biomechanics /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2020.
|
Colección: | Current topics in membranes ;
v. 86. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Membrane Biomechanics
- Copyright
- Contents
- Contributors
- Chapter One: Lipid bilayers: Phase behavior and nanomechanics
- 1. Introduction
- 2. Experimental approaches to study membrane mechanics
- 2.1. Model systems: Supported vesicles layers (SVLs) and lipid bilayers (SLBs)
- 2.2. Quartz crystal microbalance with dissipation monitoring (QCM-D)
- 2.3. Atomic force microscopy (AFM)-based methodology
- 3. Phase behavior and nanomechanics. From one-component membranes to higher complexity
- 3.1. One-component membranes
- 3.1.1. The gel and the fluid phase
- 3.1.2. The thermal transition
- 3.1.2.1. Main transition
- 3.1.2.2. Pretransition
- 3.2. Phase coexistence
- 3.3. The role of cholesterol
- 4. Connection between nanoscale measurements and thermodynamic descriptors of membranes
- 5. Conclusions and future perspectives
- Acknowledgments
- Glossary of lipid acronyms
- References
- Chapter Two: Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions
- 1. Introduction
- 2. Health benefits of omega-3 polyunsaturated fatty acids
- 3. Chemical structures of long-chain omega-3 polyunsaturated fatty acids
- 4. Hypothesized mechanisms of action of omega-3 PUFAs on cardiovascular health
- 4.1. Effects on atherosclerosis
- 4.2. Effects on endothelial function
- 4.3. Regulation of platelet function
- 4.4. Antiarrhythmic effects
- 4.5. Effects on triglyceride levels
- 4.6. Anti-inflammatory effects
- 5. Membrane modulatory effects of omega-3 PUFAs
- 5.1. Computational methods
- 5.2. Effects on bilayer membrane properties
- 6. Conclusion
- Acknowledgment
- References
- Chapter Three: Cell membrane mechanics and mechanosensory transduction
- 1. Introduction
- 2. Cell membrane mechanics
- 2.1. Mechanical force and molecular features of the plasma membrane
- 2.1.1. Basic concepts in mechanobiology
- 2.1.2. Structure and function of cell membrane
- 2.1.3. Cellular rheology and rheometry
- 2.2. Methods for determination of mechanical properties of cellular membranes
- 2.2.1. Choosing the right tool
- 2.3. Single cell-force spectroscopy
- 2.3.1. Atomic force microscopy (AFM)
- 2.3.2. Optical tweezers
- 2.3.3. Magnetic tweezers
- 2.3.4. Traction force microscopy (TFM)
- 2.3.5. Particle-tracking micro-rheology (PTM)
- 2.3.6. Acoustic force spectroscopy (AFS)
- 2.4. Cell membrane properties of organisms with and without cell wall
- 2.4.1. Bacterial cell envelopes
- 2.4.2. Animal cell membranes
- 3. Mechanosensitive ion channels
- 3.1. Major types of mechanosensitive ion channels
- 3.2. Bacterial and archaeal MS channels
- 3.2.1. MscL-like channels
- 3.2.2. MscS-like channels
- 3.3. MS channels of eukaryotes
- 3.3.1. DEG/ENaC channels
- 3.3.2. Two-pore domain K channels (K2P)
- 3.3.3. Piezo channels
- 3.3.4. TMC (transmembrane channel-like) proteins
- 3.3.5. New channel candidates