Machine learning and artificial intelligence in geosciences /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2020.
|
Colección: | Advances in geophysics ;
v. 61. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Machine Learning in Geosciences
- Copyright
- Contents
- Contributors
- Preface
- References
- Chapter One: 70 years of machine learning in geoscience in review
- 1. Historic machine learning in geoscience
- 1.1. Expert systems to knowledge-driven AI
- 1.2. Neural networks
- 1.3. Kriging and Gaussian processes
- 2. Contemporary machine learning in geoscience
- 2.1. Modern machine learning tools
- 2.2. Support-vector machines
- 2.3. Random forests
- 2.4. Modern deep learning
- 2.5. Neural network architectures
- 2.6. Convolutional neural network architectures
- 2.7. Generative adversarial networks
- 2.8. Recurrent neural network architectures
- 2.9. The state of ML on geoscience
- References
- Chapter Two: Machine learning and fault rupture: A review
- 1. Introduction
- 2. Machine learning: A shallow dive
- 2.1. Learning tasks, performance, and experience
- 2.2. Learning capacity
- 2.3. Geophysical data
- 3. Laboratory studies
- 3.1. Laboratory geodesy
- 3.2. Laboratory seismology
- 4. Field studies
- 4.1. Techniques
- 4.1.1. Earthquake catalog building
- 4.1.1.1. Earthquake detection
- 4.1.1.2. Phase picking and polarity determination
- 4.1.1.3. Event association
- 4.1.1.4. Event location
- 4.1.2. Seismic waveform denoising and enhancing
- 4.1.3. Tectonic tremor detection
- 4.1.4. Fault slip inversion
- 4.1.5. Automatic detection of geodetic deformation
- 4.2. Applications
- 4.2.1. Early warning
- 4.2.2. Induced seismicity
- 4.2.3. Earthquake catalog forecasting
- 5. Conclusion
- Acknowledgments
- References
- Chapter Three: Machine learning techniques for fractured media
- 1. Introduction
- 2. Preliminaries
- 2.1. Governing equations
- 2.2. DFN to graph mappings
- 2.2.1. Topology map
- 2.2.2. Pipe-network map
- 2.2.3. Flow topology graph (FTG) construction
- 3. Graph as a DFN reduced-order model
- 4. Pruned DFN as a reduced-order model
- 4.1. Existence of backbones
- 5. Machine learning methods for backbone identification
- 5.1. Fracture-classification: Labeling by FTG membership
- 5.2. Fracture-classification: Labeling by mass flux
- 5.3. Path-classification: Labeling by FTG membership
- 5.3.1. Logistic regression
- 5.3.1.1. Random forest
- 6. Further scope for ML in fractured media
- References
- Further reading
- Chapter Four: Seismic signal augmentation to improve generalization of deep neural networks
- 1. Introduction
- 2. Benchmark data and training procedure
- 3. Augmentations
- 3.1. Random shift
- 3.2. Superimposing events
- 3.3. Superposing noise
- 3.4. False positive noise
- 3.5. Channel dropout
- 3.6. Resampling
- 3.7. Augmentation for synthetic data generation
- 4. Discussion
- 5. Conclusions
- Acknowledgments
- References
- Chapter Five: Deep generator priors for Bayesian seismic inversion
- 1. Introduction
- 2. Methodology
- 2.1. Bayesian inference