Cargando…

Machine learning and artificial intelligence in geosciences /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Moseley, Ben, Krischer, Lion
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2020.
Colección:Advances in geophysics ; v. 61.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1198713606
003 OCoLC
005 20231120010512.0
006 m o d
007 cr |n|||||||||
008 201003s2020 mau o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d EBLCP  |d OCLCF  |d N$T  |d OCLCO  |d QGJ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780128216842  |q (electronic bk.) 
020 |a 0128216840  |q (electronic bk.) 
020 |z 9780128216699 
020 |z 0128216697 
035 |a (OCoLC)1198713606 
050 4 |a QE48.8 
082 0 4 |a 550.285631  |2 23 
245 0 0 |a Machine learning and artificial intelligence in geosciences /  |c edited by Ben Moseley, Lion Krischer. 
260 |a Cambridge, MA :  |b Academic Press,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in geophysics ;  |v volume 61 
505 0 |a Intro -- Machine Learning in Geosciences -- Copyright -- Contents -- Contributors -- Preface -- References -- Chapter One: 70 years of machine learning in geoscience in review -- 1. Historic machine learning in geoscience -- 1.1. Expert systems to knowledge-driven AI -- 1.2. Neural networks -- 1.3. Kriging and Gaussian processes -- 2. Contemporary machine learning in geoscience -- 2.1. Modern machine learning tools -- 2.2. Support-vector machines -- 2.3. Random forests -- 2.4. Modern deep learning -- 2.5. Neural network architectures -- 2.6. Convolutional neural network architectures 
505 8 |a 2.7. Generative adversarial networks -- 2.8. Recurrent neural network architectures -- 2.9. The state of ML on geoscience -- References -- Chapter Two: Machine learning and fault rupture: A review -- 1. Introduction -- 2. Machine learning: A shallow dive -- 2.1. Learning tasks, performance, and experience -- 2.2. Learning capacity -- 2.3. Geophysical data -- 3. Laboratory studies -- 3.1. Laboratory geodesy -- 3.2. Laboratory seismology -- 4. Field studies -- 4.1. Techniques -- 4.1.1. Earthquake catalog building -- 4.1.1.1. Earthquake detection -- 4.1.1.2. Phase picking and polarity determination 
505 8 |a 4.1.1.3. Event association -- 4.1.1.4. Event location -- 4.1.2. Seismic waveform denoising and enhancing -- 4.1.3. Tectonic tremor detection -- 4.1.4. Fault slip inversion -- 4.1.5. Automatic detection of geodetic deformation -- 4.2. Applications -- 4.2.1. Early warning -- 4.2.2. Induced seismicity -- 4.2.3. Earthquake catalog forecasting -- 5. Conclusion -- Acknowledgments -- References -- Chapter Three: Machine learning techniques for fractured media -- 1. Introduction -- 2. Preliminaries -- 2.1. Governing equations -- 2.2. DFN to graph mappings -- 2.2.1. Topology map -- 2.2.2. Pipe-network map 
505 8 |a 2.2.3. Flow topology graph (FTG) construction -- 3. Graph as a DFN reduced-order model -- 4. Pruned DFN as a reduced-order model -- 4.1. Existence of backbones -- 5. Machine learning methods for backbone identification -- 5.1. Fracture-classification: Labeling by FTG membership -- 5.2. Fracture-classification: Labeling by mass flux -- 5.3. Path-classification: Labeling by FTG membership -- 5.3.1. Logistic regression -- 5.3.1.1. Random forest -- 6. Further scope for ML in fractured media -- References -- Further reading 
505 8 |a Chapter Four: Seismic signal augmentation to improve generalization of deep neural networks -- 1. Introduction -- 2. Benchmark data and training procedure -- 3. Augmentations -- 3.1. Random shift -- 3.2. Superimposing events -- 3.3. Superposing noise -- 3.4. False positive noise -- 3.5. Channel dropout -- 3.6. Resampling -- 3.7. Augmentation for synthetic data generation -- 4. Discussion -- 5. Conclusions -- Acknowledgments -- References -- Chapter Five: Deep generator priors for Bayesian seismic inversion -- 1. Introduction -- 2. Methodology -- 2.1. Bayesian inference 
650 0 |a Earth sciences  |x Data processing. 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a Earth sciences  |x Data processing  |2 fast  |0 (OCoLC)fst00900738 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Moseley, Ben. 
700 1 |a Krischer, Lion. 
776 0 8 |i Print version:  |z 0128216697  |z 9780128216699  |w (OCoLC)1141039353 
830 0 |a Advances in geophysics ;  |v v. 61. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00652687/61  |z Texto completo