Cargando…

Computational modelling of nanomaterials /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Grammatikopoulos, Panagiotis
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2020.
Colección:Frontiers of nanoscience ; 17
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Computational Modelling of Nanomaterials
  • Series Page
  • Computational Modelling of Nanomaterials
  • Copyright
  • Contents
  • Contributors
  • Preface
  • REFERENCE
  • 1
  • Perspective of computational modeling of nanomaterials
  • 1. History
  • 2. Rise of nanoscience
  • 3. Computer simulation of nanomaterials
  • References
  • 2
  • Computational modeling of nanoparticles in inert environment
  • 1. Historical background and current challenges
  • 2. Computational modeling method
  • 2.1 Calculating the energy of a NP: quantum versus classical
  • 2.2 Study dynamics: molecular dynamics
  • 2.3 Atomistic Monte Carlo method
  • 2.4 Metropolis Monte Carlo
  • 2.5 Simulation of diffusional processes
  • 2.6 Kinetic Monte Carlo
  • 2.6.1 Calculation of energy barriers for KMC simulations
  • 2.6.2 Formation of Fe nanocubes by KMC methods
  • 3. Multiscale modeling of NPs in practice
  • 3.1 Modeling a NP in inert gas-phase thermostat
  • 3.2 Simulation of NP nucleation and growth in gas-phase condensation
  • 3.3 NP emission from a solid Ar matrix
  • 4. Conclusion
  • Acknowledgment
  • References
  • 3
  • Multiscale modeling of magnetic nanoparticle systems
  • 1. Introduction
  • 2. The model
  • 2.1 Electronic structure calculations of single magnetic nanoparticles
  • 2.2 Mesoscopic-scale modeling
  • 3. Case studies
  • 3.1 Case study 1: magnetic behavior of Mn ferrite nanoparticles
  • 3.2 Case study 2: magnetic behavior of Co ferrite nanoparticles coated with organic ligands
  • 4. Concluding remarks
  • Acknowledgment
  • References
  • 4
  • Formation and growth of fractal-like agglomerates and aggregates in the gas phase
  • 1. Introduction
  • 2. Nanoparticle characterization: size and structure
  • 3. Nucleation, condensation, and surface growth
  • 3.1 Metallic nanoparticles
  • 3.2 Carbonaceous nanoparticles
  • 4. Nanoparticle sintering
  • 4.1 Sintering mechanisms
  • 4.2 Sintering rates by molecular dynamics
  • 4.3 Sintering rates by discrete element method
  • 5. Coagulation
  • 5.1 Coagulation by full coalescence
  • 5.2 Coagulation by agglomeration
  • 5.3 Coagulation by agglomeration and surface growth
  • 6. Multiscale modeling
  • 7. Concluding remarks
  • References
  • 5
  • Tuning thermal transport in nanowires: molecular dynamics and Monte Carlo simulations
  • 1. Introduction
  • 2. Methodology
  • 2.1 Molecular dynamics
  • 2.2 Monte Carlo method for the solution of the Boltzmann transport equation
  • 2.2.1 Introduction
  • 2.2.2 BTE formulation for phonons
  • 2.2.3 Monte Carlo implementation
  • 3. Studies
  • 3.1 Silicon nanowires with diameter modulation
  • 3.2 Growth direction of Bi2Te3 nanowires
  • 4. Conclusions
  • References
  • 6
  • Protein modeling
  • 1. Introduction to protein structure modeling
  • 2. Modeling of protein structure based on sequence
  • 2.1 Terminology and molecular file format
  • 2.2 Application programs
  • 2.3 Homology modeling of L-PGDS
  • 2.3.1 Target sequence
  • 2.3.2 Template selection