Computational modelling of nanomaterials /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2020.
|
Colección: | Frontiers of nanoscience ;
17 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Computational Modelling of Nanomaterials
- Series Page
- Computational Modelling of Nanomaterials
- Copyright
- Contents
- Contributors
- Preface
- REFERENCE
- 1
- Perspective of computational modeling of nanomaterials
- 1. History
- 2. Rise of nanoscience
- 3. Computer simulation of nanomaterials
- References
- 2
- Computational modeling of nanoparticles in inert environment
- 1. Historical background and current challenges
- 2. Computational modeling method
- 2.1 Calculating the energy of a NP: quantum versus classical
- 2.2 Study dynamics: molecular dynamics
- 2.3 Atomistic Monte Carlo method
- 2.4 Metropolis Monte Carlo
- 2.5 Simulation of diffusional processes
- 2.6 Kinetic Monte Carlo
- 2.6.1 Calculation of energy barriers for KMC simulations
- 2.6.2 Formation of Fe nanocubes by KMC methods
- 3. Multiscale modeling of NPs in practice
- 3.1 Modeling a NP in inert gas-phase thermostat
- 3.2 Simulation of NP nucleation and growth in gas-phase condensation
- 3.3 NP emission from a solid Ar matrix
- 4. Conclusion
- Acknowledgment
- References
- 3
- Multiscale modeling of magnetic nanoparticle systems
- 1. Introduction
- 2. The model
- 2.1 Electronic structure calculations of single magnetic nanoparticles
- 2.2 Mesoscopic-scale modeling
- 3. Case studies
- 3.1 Case study 1: magnetic behavior of Mn ferrite nanoparticles
- 3.2 Case study 2: magnetic behavior of Co ferrite nanoparticles coated with organic ligands
- 4. Concluding remarks
- Acknowledgment
- References
- 4
- Formation and growth of fractal-like agglomerates and aggregates in the gas phase
- 1. Introduction
- 2. Nanoparticle characterization: size and structure
- 3. Nucleation, condensation, and surface growth
- 3.1 Metallic nanoparticles
- 3.2 Carbonaceous nanoparticles
- 4. Nanoparticle sintering
- 4.1 Sintering mechanisms
- 4.2 Sintering rates by molecular dynamics
- 4.3 Sintering rates by discrete element method
- 5. Coagulation
- 5.1 Coagulation by full coalescence
- 5.2 Coagulation by agglomeration
- 5.3 Coagulation by agglomeration and surface growth
- 6. Multiscale modeling
- 7. Concluding remarks
- References
- 5
- Tuning thermal transport in nanowires: molecular dynamics and Monte Carlo simulations
- 1. Introduction
- 2. Methodology
- 2.1 Molecular dynamics
- 2.2 Monte Carlo method for the solution of the Boltzmann transport equation
- 2.2.1 Introduction
- 2.2.2 BTE formulation for phonons
- 2.2.3 Monte Carlo implementation
- 3. Studies
- 3.1 Silicon nanowires with diameter modulation
- 3.2 Growth direction of Bi2Te3 nanowires
- 4. Conclusions
- References
- 6
- Protein modeling
- 1. Introduction to protein structure modeling
- 2. Modeling of protein structure based on sequence
- 2.1 Terminology and molecular file format
- 2.2 Application programs
- 2.3 Homology modeling of L-PGDS
- 2.3.1 Target sequence
- 2.3.2 Template selection