Higher order dynamic mode decomposition and its applications /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, United Kingdom :
Academic Press, an imprint of Elsevier,
[2021]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- 1 General introduction and scope of the book
- 1.1 Introduction to post-processing tools
- 1.1.1 Singular value decomposition
- 1.1.2 A toy model to illustrate SVD
- 1.1.3 Proper orthogonal decomposition
- 1.1.4 Higher order SVD
- 1.1.5 A toy model to illustrate HOSVD
- 1.1.6 Applications of SVD and HOSVD
- 1.2 Introduction to reduced order models
- 1.2.1 Data-driven ROMs
- 1.2.2 Projection-based ROMs; 1.3 Organization of the book
- 1.4 Some concluding remarks
- 1.5 Annexes to Chapter 1
- A. Compact SVD
- B. Truncated SVD
- C. Economy HOSVD
- D. Compact HOSVD
- E. Truncated HOSVD
- 2 Higher order dynamic mode decomposition
- 2.1 Introduction to standard DMD and HODMD
- 2.2 DMD and HODMD: methods and algorithms
- 2.2.1 The standard (optimized) DMD method: the DMD-1 algorithm
- 2.2.2 The DMD-d algorithm with d>1
- 2.2.3 HODMD for spatially multidimensional data, involving more than one spatial variables
- 2.2.4 Iterative HODMD; 2.2.5 Some key points to successfully use the DMD-d algorithm with d>=1
- 2.3 Periodic and quasi-periodic phenomena
- 2.3.1 Approximate commensurability
- 2.3.2 Semi-analytic representation of periodic dynamics and invariant periodic orbits in phase space
- 2.3.3 Semi-analytic representation of quasi-periodic dynamics and the associated invariant tori in phase space
- 2.4 Some toy models
- 2.5 Some concluding remarks
- 2.6 Annexes to Chapter 2
- A. HODMD algorithm: the main program
- B. DMD-d algorithm
- C. DMD-1 algorithm
- D. Reconstruction of the original eld; E. Approximate commensurability
- 3 HODMD applications to the analysis of ight tests and magnetic resonance
- 3.1 Introduction to utter in ight tests
- 3.1.1 Training the method using a toy model for ight tests
- 3.1.2 Using the method in actual ight tests experimental data
- 3.2 Introduction to nuclear magnetic resonance
- 3.2.1 Training the method using a magnetic resonance toy model
- 3.2.2 Using the method with synthetic magnetic resonance experimental data
- 3.3 Some concluding remarks
- 3.4 Annexes to Chapter 3
- A. Flight test experiments: toy model; B. Nuclear magnetic resonance: toy model
- 4 Spatio-temporal Koopman decomposition
- 4.1 Introduction to the spatio-temporal Koopman decomposition method
- 4.2 Traveling waves and standing waves
- 4.3 The STKD method
- 4.3.1 A scalar state variable in one space dimension
- 4.3.2 Vector state variable with one longitudinal and one transverse coordinate
- 4.3.3 Vector state variable with two transverse and one longitudinal coordinates
- 4.3.4 Vector state variable with one transverse and two longitudinal coordinates
- 4.4 Some key points about the use of the STKD method