|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1197549601 |
003 |
OCoLC |
005 |
20231120010510.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200924s2021 enk ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d OPELS
|d N$T
|d OCLCF
|d WAU
|d OCLCO
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780128227664
|q (electronic bk.)
|
020 |
|
|
|a 0128227664
|q (electronic bk.)
|
020 |
|
|
|z 9780128197431
|
020 |
|
|
|z 0128197439
|
035 |
|
|
|a (OCoLC)1197549601
|
050 |
|
4 |
|a QA402.2
|
082 |
0 |
4 |
|a 518
|2 23
|
100 |
1 |
|
|a Vega, Jos�e Manuel,
|d 1974-
|e author.
|
245 |
1 |
0 |
|a Higher order dynamic mode decomposition and its applications /
|c Jos�e M. Vega, Soledad Le Clainche.
|
264 |
|
1 |
|a London, United Kingdom :
|b Academic Press, an imprint of Elsevier,
|c [2021]
|
300 |
|
|
|a 1 online resource (xv, 304 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed September 22, 2021).
|
505 |
0 |
|
|a Preface -- 1 General introduction and scope of the book -- 1.1 Introduction to post-processing tools -- 1.1.1 Singular value decomposition -- 1.1.2 A toy model to illustrate SVD -- 1.1.3 Proper orthogonal decomposition -- 1.1.4 Higher order SVD -- 1.1.5 A toy model to illustrate HOSVD -- 1.1.6 Applications of SVD and HOSVD -- 1.2 Introduction to reduced order models -- 1.2.1 Data-driven ROMs -- 1.2.2 Projection-based ROMs; 1.3 Organization of the book -- 1.4 Some concluding remarks -- 1.5 Annexes to Chapter 1 -- A. Compact SVD -- B. Truncated SVD -- C. Economy HOSVD -- D. Compact HOSVD -- E. Truncated HOSVD -- 2 Higher order dynamic mode decomposition -- 2.1 Introduction to standard DMD and HODMD -- 2.2 DMD and HODMD: methods and algorithms -- 2.2.1 The standard (optimized) DMD method: the DMD-1 algorithm -- 2.2.2 The DMD-d algorithm with d>1 -- 2.2.3 HODMD for spatially multidimensional data, involving more than one spatial variables -- 2.2.4 Iterative HODMD; 2.2.5 Some key points to successfully use the DMD-d algorithm with d>=1 -- 2.3 Periodic and quasi-periodic phenomena -- 2.3.1 Approximate commensurability -- 2.3.2 Semi-analytic representation of periodic dynamics and invariant periodic orbits in phase space -- 2.3.3 Semi-analytic representation of quasi-periodic dynamics and the associated invariant tori in phase space -- 2.4 Some toy models -- 2.5 Some concluding remarks -- 2.6 Annexes to Chapter 2 -- A. HODMD algorithm: the main program -- B. DMD-d algorithm -- C. DMD-1 algorithm -- D. Reconstruction of the original eld; E. Approximate commensurability -- 3 HODMD applications to the analysis of ight tests and magnetic resonance -- 3.1 Introduction to utter in ight tests -- 3.1.1 Training the method using a toy model for ight tests -- 3.1.2 Using the method in actual ight tests experimental data -- 3.2 Introduction to nuclear magnetic resonance -- 3.2.1 Training the method using a magnetic resonance toy model -- 3.2.2 Using the method with synthetic magnetic resonance experimental data -- 3.3 Some concluding remarks -- 3.4 Annexes to Chapter 3 -- A. Flight test experiments: toy model; B. Nuclear magnetic resonance: toy model -- 4 Spatio-temporal Koopman decomposition -- 4.1 Introduction to the spatio-temporal Koopman decomposition method -- 4.2 Traveling waves and standing waves -- 4.3 The STKD method -- 4.3.1 A scalar state variable in one space dimension -- 4.3.2 Vector state variable with one longitudinal and one transverse coordinate -- 4.3.3 Vector state variable with two transverse and one longitudinal coordinates -- 4.3.4 Vector state variable with one transverse and two longitudinal coordinates -- 4.4 Some key points about the use of the STKD method
|
650 |
|
0 |
|a Decomposition (Mathematics)
|
650 |
|
0 |
|a Decomposition method.
|
650 |
|
6 |
|a D�ecomposition (Math�ematiques)
|0 (CaQQLa)201-0067483
|
650 |
|
7 |
|a Decomposition (Mathematics)
|2 fast
|0 (OCoLC)fst00889127
|
650 |
|
7 |
|a Decomposition method
|2 fast
|0 (OCoLC)fst00889130
|
700 |
1 |
|
|a Le Clainche, Soledad,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a VEGA, JOSE MANUEL. LE CLAINCHE, SOLEDAD.
|t Higher order dynamic mode decomposition and its applications.
|d [Place of publication not identified] ELSEVIER ACADEMIC Press, 2020
|z 0128197439
|w (OCoLC)1141039921
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128197431
|z Texto completo
|