Cargando…

Higher order dynamic mode decomposition and its applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vega, Jos�e Manuel, 1974- (Autor), Le Clainche, Soledad (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, an imprint of Elsevier, [2021]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1197549601
003 OCoLC
005 20231120010510.0
006 m o d
007 cr |n|||||||||
008 200924s2021 enk ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OPELS  |d N$T  |d OCLCF  |d WAU  |d OCLCO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO 
020 |a 9780128227664  |q (electronic bk.) 
020 |a 0128227664  |q (electronic bk.) 
020 |z 9780128197431 
020 |z 0128197439 
035 |a (OCoLC)1197549601 
050 4 |a QA402.2 
082 0 4 |a 518  |2 23 
100 1 |a Vega, Jos�e Manuel,  |d 1974-  |e author. 
245 1 0 |a Higher order dynamic mode decomposition and its applications /  |c Jos�e M. Vega, Soledad Le Clainche. 
264 1 |a London, United Kingdom :  |b Academic Press, an imprint of Elsevier,  |c [2021] 
300 |a 1 online resource (xv, 304 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (ScienceDirect, viewed September 22, 2021). 
505 0 |a Preface -- 1 General introduction and scope of the book -- 1.1 Introduction to post-processing tools -- 1.1.1 Singular value decomposition -- 1.1.2 A toy model to illustrate SVD -- 1.1.3 Proper orthogonal decomposition -- 1.1.4 Higher order SVD -- 1.1.5 A toy model to illustrate HOSVD -- 1.1.6 Applications of SVD and HOSVD -- 1.2 Introduction to reduced order models -- 1.2.1 Data-driven ROMs -- 1.2.2 Projection-based ROMs; 1.3 Organization of the book -- 1.4 Some concluding remarks -- 1.5 Annexes to Chapter 1 -- A. Compact SVD -- B. Truncated SVD -- C. Economy HOSVD -- D. Compact HOSVD -- E. Truncated HOSVD -- 2 Higher order dynamic mode decomposition -- 2.1 Introduction to standard DMD and HODMD -- 2.2 DMD and HODMD: methods and algorithms -- 2.2.1 The standard (optimized) DMD method: the DMD-1 algorithm -- 2.2.2 The DMD-d algorithm with d>1 -- 2.2.3 HODMD for spatially multidimensional data, involving more than one spatial variables -- 2.2.4 Iterative HODMD; 2.2.5 Some key points to successfully use the DMD-d algorithm with d>=1 -- 2.3 Periodic and quasi-periodic phenomena -- 2.3.1 Approximate commensurability -- 2.3.2 Semi-analytic representation of periodic dynamics and invariant periodic orbits in phase space -- 2.3.3 Semi-analytic representation of quasi-periodic dynamics and the associated invariant tori in phase space -- 2.4 Some toy models -- 2.5 Some concluding remarks -- 2.6 Annexes to Chapter 2 -- A. HODMD algorithm: the main program -- B. DMD-d algorithm -- C. DMD-1 algorithm -- D. Reconstruction of the original eld; E. Approximate commensurability -- 3 HODMD applications to the analysis of ight tests and magnetic resonance -- 3.1 Introduction to utter in ight tests -- 3.1.1 Training the method using a toy model for ight tests -- 3.1.2 Using the method in actual ight tests experimental data -- 3.2 Introduction to nuclear magnetic resonance -- 3.2.1 Training the method using a magnetic resonance toy model -- 3.2.2 Using the method with synthetic magnetic resonance experimental data -- 3.3 Some concluding remarks -- 3.4 Annexes to Chapter 3 -- A. Flight test experiments: toy model; B. Nuclear magnetic resonance: toy model -- 4 Spatio-temporal Koopman decomposition -- 4.1 Introduction to the spatio-temporal Koopman decomposition method -- 4.2 Traveling waves and standing waves -- 4.3 The STKD method -- 4.3.1 A scalar state variable in one space dimension -- 4.3.2 Vector state variable with one longitudinal and one transverse coordinate -- 4.3.3 Vector state variable with two transverse and one longitudinal coordinates -- 4.3.4 Vector state variable with one transverse and two longitudinal coordinates -- 4.4 Some key points about the use of the STKD method 
650 0 |a Decomposition (Mathematics) 
650 0 |a Decomposition method. 
650 6 |a D�ecomposition (Math�ematiques)  |0 (CaQQLa)201-0067483 
650 7 |a Decomposition (Mathematics)  |2 fast  |0 (OCoLC)fst00889127 
650 7 |a Decomposition method  |2 fast  |0 (OCoLC)fst00889130 
700 1 |a Le Clainche, Soledad,  |e author. 
776 0 8 |i Print version:  |a VEGA, JOSE MANUEL. LE CLAINCHE, SOLEDAD.  |t Higher order dynamic mode decomposition and its applications.  |d [Place of publication not identified] ELSEVIER ACADEMIC Press, 2020  |z 0128197439  |w (OCoLC)1141039921 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128197431  |z Texto completo