Cargando…

Bioceramics : from macro to nanoscale /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Osaka, Akiyoshi (Editor ), Narayan, Roger (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Cambridge, MA : Elsevier, [2021]
Colección:Elsevier series on advanced ceramic materials
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Bioceramics: From Macro to Nanoscale
  • Copyright
  • Dedication
  • Contents
  • Contributors
  • Acknowledgments
  • Chapter 1: Introduction
  • References
  • Part One: Nanostructured surfaces, Surface biomedical modifications of materials
  • Chapter 2: Importance of nanostructured surfaces
  • 1. Introduction
  • 1.1. Properties of nanomaterials
  • 1.2. Surface modifications of nanomaterials
  • 1.3. Biomedical applications of nanomaterials
  • 2. Surface modifications of nanomaterials
  • 2.1. Chemical treatment
  • 2.2. Sol-gel
  • 2.3. Electrochemical treatment
  • 2.3.1. Anodic oxidation
  • 2.3.2. Micro-arc oxidation (MAO)
  • 2.3.3. Electrophoretic deposition
  • 2.4. Chemical vapor deposition
  • 2.5. Biochemical methods
  • 2.5.1. Esterification method
  • 2.5.2. Coupling agent method
  • 2.5.3. Surface grafting modification
  • 2.6. Physical methods
  • 2.6.1. Mechanical methods
  • 2.6.2. Thermal spray method
  • 2.6.3. Physical vapor deposition
  • 2.6.4. Ion implantation and deposition
  • 3. Important application of surface modification of nanomaterials in biomedical field
  • 3.1. Bone tissue engineering
  • 3.2. Drug carriers
  • 3.3. Antibacterial properties
  • 3.4. Medical imaging, diagnosis, and therapy
  • 3.4.1. Medical imaging and diagnosis
  • 3.4.2. Medical therapy
  • 4. Summary
  • References
  • Chapter 3: Nanostructured TiO2 layers on Ti for bone bonding
  • 1. Bioactive bone bonding intrigued by TiO2 layer on Ti implants
  • 1.1. Ti-NaOH interaction
  • 1.2. Ti-H2O2 interaction
  • 1.3. Low temperature crystallization of TiO2 layer
  • 2. Nanostructures to introduce bioactive and antibacterial surfaces on Ti implants
  • 2.1. In vitro apatite deposition
  • 2.2. Cell response
  • 2.3. Antibacterial
  • 3. Nanostructured TiO2 films on Ti and its alloys
  • 3.1. Anodic oxidation
  • 3.2. Alkali-hydrothermal treatment
  • 3.3. Hydrogen peroxide treatment
  • 3.3.1. Porous film
  • 3.3.2. Nanorod array
  • 3.3.3. Nanoflower array
  • 3.3.4. Nanowire array and its derivants
  • 3.3.5. Variant titanium sources
  • 3.4. HF treatment
  • 3.5. Other wet chemistry approaches
  • 4. Conclusions and perspectives
  • References
  • Chapter 4: Organic modification of magnetite nanoparticles for biomedical applications
  • 1. Cancer hyperthermia by magnetic nanoparticles
  • 2. Preparation of magnetic nanoparticles
  • 3. Interaction with organic molecules in Fe3O4 synthesis
  • 4. Fe3O4 formation in hydrogel
  • 5. Biological functions and hyperthermia applications of organically modified magnetite
  • 6. Conclusions
  • References
  • Part Two: Nanoparticles for drug delivery applications, sensing, and diagnostics
  • Chapter 5: NIR excitation of rare-earth ions in ceramics for diagnosis, bioimaging, and light-induced therapy
  • 1. Introduction
  • 2. Properties required for the RED-CNPs
  • 3. Nanoparticle synthetic methods, size, and morphology
  • 4. Surface modification
  • 5. Biomedical applications of RED-CNPs
  • 5.1. In vivo fluorescence imaging