Cargando…

Green sustainable process for chemical and environmental engineering and science. Sustainable organic synthesis /

Green Sustainable Process for Chemical and Environmental Engineering and Science: Sustainable Organic Synthesis provides an in-depth overview in the area of organic, pharmaceutical, engineering and environmental sciences, with a focus on the purification and extraction of fine chemicals, alternative...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Inamuddin, 1980- (Editor ), Boddula, Rajender (Editor ), Asiri, Abdullah M. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Green Sustainable Process for Chemical and Environmental Engineering and Science: Microwaves in Organic Synthesis
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Microwave catalysis in organic synthesis
  • 1. Introduction
  • 1.1. History
  • 1.2. Early development in utilization of microwave heating for organic synthesis
  • 2. Factors influencing microwave heating in organic reactions
  • 2.1. Microwave heating mechanism
  • 2.1.1. Dipolar polarization mechanism
  • 2.1.2. Ionic conduction mechanism
  • 2.2. Dielectric properties and loss tangent
  • 2.3. Superheating effect
  • 2.4. Interaction of microwaves with different materials
  • 3. Comparison of microwave with conventional heating
  • 4. Microwave-assisted catalytic organic reactions
  • 4.1. Coupling reactions
  • 4.1.1. Suzuki reaction (or Suzuki-Miyaura coupling)
  • 4.1.2. Stille coupling reaction
  • 4.1.3. Sonogashira coupling
  • 4.1.4. Heck reaction
  • 4.2. Microwave-assisted heterocyclic chemistry
  • 4.2.1. Nitrogen-containing heterocycles
  • 4.2.2. Oxygen-containing heterocycles
  • 4.2.3. Sulfur-containing heterocycles
  • 4.3. Multicomponent reactions
  • 4.3.1. Hantzsch reaction
  • 4.3.2. Ugi reaction
  • 4.3.3. Biginelli reaction
  • 4.3.4. Mannich reaction
  • 4.3.5. Strecker reaction
  • 4.4. Alkylation reactions
  • 4.4.1. N-Alkylation
  • 4.4.2. C-Alkylation
  • 4.4.3. O-Alkylation
  • 4.5. Esterification and transesterification reactions
  • 5. Microwave reactors
  • 6. Current challenges in microwave-assisted synthesis
  • 6.1. Energy efficiency
  • 6.2. Scale-up of microwave-assisted organic reactions
  • 7. Conclusion
  • References
  • Chapter 2: Microwave-assisted CN formation reactions
  • 1. Introduction
  • 2. N-Arylations, N-alkylations, and related reactions
  • 2.1. Palladium-catalyzed processes-Buchawald-Hartwig amination
  • 2.2. Copper-catalyzed reactions-The Ullmann coupling
  • 2.3. Application of other metal catalysts
  • 2.4. Metal-free transformations
  • 2.5. The Petasis borono-Mannich reaction
  • 2.6. Three-component propargylations
  • 3. Amidations
  • 3.1. Direct amidations
  • 3.2. Amidation by reacting esters and amines
  • 3.3. Transamidations
  • 3.4. Oxidative amidations
  • 3.5. Miscellaneous processes
  • 4. Ring-forming reactions
  • 4.1. Rings with one nitrogen atom
  • 4.1.1. Synthesis of three- and four-membered rings
  • 4.1.2. Synthesis of five-membered rings
  • 4.1.3. Six-membered and larger rings
  • 4.1.4. Condensed rings: Indoles and structural isomers
  • 4.1.5. Condensed rings: Quinolines and isoquinolines
  • 4.1.6. Molecules with multiple rings
  • 4.2. Ring systems with two nitrogen atoms
  • 4.2.1. Synthesis of diazoles
  • 4.2.2. Six-membered rings
  • 4.2.3. Condensed rings
  • 4.2.4. Molecules with multiple rings
  • 4.3. Rings with three and four nitrogen atoms
  • 4.3.1. Synthesis of azoles
  • Synthesis of 1,2,3-triazoles
  • Synthesis of 1,2,4-triazoles
  • Synthesis of tetrazoles