Applications of artificial intelligence techniques in the petroleum industry /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Gulf Professional Publishing,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Applications of Artificial Intelligence Techniques in the Petroleum Industry
- Copyright Page
- Contents
- About the author
- 1 Introduction
- 1.1 Overview
- 1.2 Preprocessing of data
- 1.2.1 Data cleaning
- 1.2.2 Data integration
- 1.2.3 Data transformation
- 1.2.4 Data reduction
- 1.2.5 Data discretization
- 1.2.6 Data statistics
- 1.2.6.1 Skewness
- 1.2.6.2 Kurtosis
- 1.3 Processing of data
- 1.3.1 Data training
- 1.3.2 Data validation and testing
- 1.4 Postprocessing of data
- 1.4.1 Statistical analyses for models' evaluation
- 1.4.1.1 Average percent relative error (APRE)
- 1.4.1.2 Average absolute percent relative error (AAPRE)
- 1.4.1.3 Root mean square error (RMSE)
- 1.4.1.4 Standard deviation (SD)
- 1.4.1.5 Coefficient of determination (R2)
- 1.4.2 Graphical error analysis for models' evaluation
- 1.4.2.1 Error distribution curve
- 1.4.2.2 Crossplots
- 1.4.2.3 Cumulative frequency plots versus absolute percent relative error
- 1.4.2.4 Group error
- 1.4.2.5 3-D plots
- 1.5 Applicability domain of a model
- 1.5.1 Identification of experimental data outliers
- 1.6 Sensitivity analysis on models' inputs
- 1.6.1 Relevancy factor analysis
- 1.7 The areas of intelligent models applications in the petroleum industry
- References
- 2 Intelligent models
- 2.1 Artificial neural networks
- 2.1.1 Multilayer perceptron neural network
- 2.1.2 Radial basis function neural network
- 2.2 Fuzzy logic systems
- 2.3 Adaptive neuro-fuzzy inference system
- 2.4 Support vector machine
- 2.4.1 Ordinary support vector machine
- 2.4.2 Least-square support vector machine
- 2.5 Decision tree
- 2.5.1 Random forest
- 2.5.2 Extra trees
- 2.6 Group method of data handling
- 2.6.1 Hybrid group method of data handling
- 2.7 Genetic programming
- 2.7.1 Multigene genetic programming
- 2.8 Gene expression programming
- 2.9 Case-based reasoning
- 2.10 Committee machine intelligent system
- References
- 3 Training and optimization algorithms
- 3.1 Overview
- 3.2 Genetic algorithm
- 3.3 Differential evolution
- 3.4 Particle swarm optimization
- 3.5 Ant colony optimization
- 3.6 Artificial bee colony
- 3.7 Firefly algorithm
- 3.8 Imperialist competitive algorithm
- 3.9 Simulated annealing
- 3.10 Coupled simulated annealing
- 3.11 Gravitational search algorithm
- 3.12 Cuckoo optimization algorithm
- 3.13 Gray wolf optimization
- 3.14 Whale optimization algorithm
- 3.15 Levenberg-Marquardt algorithm
- 3.16 Bayesian regularization algorithm
- 3.17 Scaled conjugate gradient algorithm
- 3.18 Resilient backpropagation algorithm
- References
- 4 Application of intelligent models in reservoir and production engineering
- 4.1 Reservoir fluid properties
- 4.1.1 One-phase properties
- 4.1.2 Two-phase properties
- 4.2 Rock properties
- 4.3 Enhanced oil recovery
- 4.3.1 Enhanced oil recovery processes