Fundamentals of optimization techniques with algorithms /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, United Kingdom ; San Diego, CA, United States :
Academic Press is an imprint of Elsevier,
[2020]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Fundamentals of Optimization Techniques With Algorithms
- Copyright Page
- Dedication
- Contents
- Preface
- Acknowledgments
- 1. Introduction to optimization
- 1.1 Optimal problem formulation
- 1.1.1 Design variables
- 1.1.2 Constraints
- 1.1.3 Objective function
- 1.1.4 Variable bounds
- 1.2 Engineering applications of optimization
- 1.3 Optimization techniques
- Further reading
- 2. Linear programming
- 2.1 Formulation of the problem
- Practice set 2.1
- 2.2 Graphical method
- 2.2.1 Working procedure
- Practice set 2.2
- 2.3 General LPP
- 2.3.1 Canonical and standard forms of LPP
- Practice set 2.3
- 2.4 Simplex method
- 2.4.1 Reduction of feasible solution to a basic feasible solution
- 2.4.2 Working procedure of the simplex method
- Practice set 2.4
- 2.5 Artificial variable techniques
- 2.5.1 Big M method
- 2.5.2 Two-phase method
- Practice set 2.5
- 2.6 Duality Principle
- 2.6.1 Formulation of a dual problem
- 2.6.1.1 Formulation of a dual problem when the primal has equality constraints
- 2.6.1.2 Duality principle
- Practice set 2.6
- 2.7 Dual simplex method
- 2.7.1 Working procedure for a dual simplex method
- Practice set 2.7
- Further reading
- 3. Single-variable nonlinear optimization
- 3.1 Classical method for single-variable optimization
- 3.2 Exhaustive search method
- 3.3 Bounding phase method
- 3.4 Interval halving method
- 3.5 Fibonacci search method
- 3.6 Golden section search method
- 3.7 Bisection method
- 3.8 Newton-Raphson method
- 3.9 Secant method
- 3.10 Successive quadratic point estimation method
- Further reading
- 4. Multivariable unconstrained nonlinear optimization
- 4.1 Classical method for multivariable optimization
- 4.1.1 Definition: rth differential of a function f(X)
- 4.1.2 Necessary condition
- 4.1.3 Sufficient condition
- 4.2 Unidirectional search method
- 4.3 Evolutionary search method
- 4.3.1 Box's evolutionary optimization method
- 4.4 Simplex search method
- 4.5 Hooke-Jeeves pattern search method
- 4.5.1 Exploratory move
- 4.5.2 Pattern move
- 4.6 Conjugate direction method
- 4.6.1 Parallel subspace property
- 4.6.2 Extended parallel subspace property
- 4.7 Steepest descent method
- 4.7.1 Cauchy's (steepest descent) method
- 4.8 Newton's method
- 4.9 Marquardt's method
- Practice set
- Further reading
- 5. Multivariable constrained nonlinear optimization
- 5.1 Classical methods for equality constrained optimization
- 5.1.1 Solution by direct substitution
- 5.1.2 Solution by the method of constrained variation
- 5.1.3 Solution by the method of Lagrange multipliers
- 5.1.3.1 Necessary conditions
- 5.1.3.2 Sufficient condition
- 5.2 Classical methods for inequality constrained optimization
- 5.3 Random search method
- 5.4 Complex method
- 5.4.1 Iterative procedure
- 5.5 Sequential linear programming
- 5.6 Zoutendijk's method of feasible directions