Cargando…

Fundamentals of optimization techniques with algorithms /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nayak, Sukanta (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom ; San Diego, CA, United States : Academic Press is an imprint of Elsevier, [2020]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1191246782
003 OCoLC
005 20231120010507.0
006 m o d
007 cr |n|||||||||
008 200831s2020 enka o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d UKAHL  |d UKMGB  |d OCLCO  |d OCLCF  |d EBLCP  |d N$T  |d KUK  |d CNMON  |d OCLCO  |d OPELS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ 
015 |a GBC0B7168  |2 bnb 
016 7 |a 019886982  |2 Uk 
019 |a 1193129070  |a 1196197823  |a 1380935423 
020 |a 9780128224922  |q (electronic bk.) 
020 |a 0128224924  |q (electronic bk.) 
020 |z 9780128211267 
020 |z 0128211261 
035 |a (OCoLC)1191246782  |z (OCoLC)1193129070  |z (OCoLC)1196197823  |z (OCoLC)1380935423 
050 4 |a QA402.5 
082 0 4 |a 519.6  |2 23 
100 1 |a Nayak, Sukanta,  |e author. 
245 1 0 |a Fundamentals of optimization techniques with algorithms /  |c Sukanta Nayak. 
264 1 |a London, United Kingdom ;  |a San Diego, CA, United States :  |b Academic Press is an imprint of Elsevier,  |c [2020] 
300 |a 1 online resource (xv, 305 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover -- Fundamentals of Optimization Techniques With Algorithms -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- 1. Introduction to optimization -- 1.1 Optimal problem formulation -- 1.1.1 Design variables -- 1.1.2 Constraints -- 1.1.3 Objective function -- 1.1.4 Variable bounds -- 1.2 Engineering applications of optimization -- 1.3 Optimization techniques -- Further reading -- 2. Linear programming -- 2.1 Formulation of the problem -- Practice set 2.1 -- 2.2 Graphical method -- 2.2.1 Working procedure -- Practice set 2.2 -- 2.3 General LPP 
505 8 |a 2.3.1 Canonical and standard forms of LPP -- Practice set 2.3 -- 2.4 Simplex method -- 2.4.1 Reduction of feasible solution to a basic feasible solution -- 2.4.2 Working procedure of the simplex method -- Practice set 2.4 -- 2.5 Artificial variable techniques -- 2.5.1 Big M method -- 2.5.2 Two-phase method -- Practice set 2.5 -- 2.6 Duality Principle -- 2.6.1 Formulation of a dual problem -- 2.6.1.1 Formulation of a dual problem when the primal has equality constraints -- 2.6.1.2 Duality principle -- Practice set 2.6 -- 2.7 Dual simplex method -- 2.7.1 Working procedure for a dual simplex method 
505 8 |a Practice set 2.7 -- Further reading -- 3. Single-variable nonlinear optimization -- 3.1 Classical method for single-variable optimization -- 3.2 Exhaustive search method -- 3.3 Bounding phase method -- 3.4 Interval halving method -- 3.5 Fibonacci search method -- 3.6 Golden section search method -- 3.7 Bisection method -- 3.8 Newton-Raphson method -- 3.9 Secant method -- 3.10 Successive quadratic point estimation method -- Further reading -- 4. Multivariable unconstrained nonlinear optimization -- 4.1 Classical method for multivariable optimization 
505 8 |a 4.1.1 Definition: rth differential of a function f(X) -- 4.1.2 Necessary condition -- 4.1.3 Sufficient condition -- 4.2 Unidirectional search method -- 4.3 Evolutionary search method -- 4.3.1 Box's evolutionary optimization method -- 4.4 Simplex search method -- 4.5 Hooke-Jeeves pattern search method -- 4.5.1 Exploratory move -- 4.5.2 Pattern move -- 4.6 Conjugate direction method -- 4.6.1 Parallel subspace property -- 4.6.2 Extended parallel subspace property -- 4.7 Steepest descent method -- 4.7.1 Cauchy's (steepest descent) method -- 4.8 Newton's method -- 4.9 Marquardt's method 
505 8 |a Practice set -- Further reading -- 5. Multivariable constrained nonlinear optimization -- 5.1 Classical methods for equality constrained optimization -- 5.1.1 Solution by direct substitution -- 5.1.2 Solution by the method of constrained variation -- 5.1.3 Solution by the method of Lagrange multipliers -- 5.1.3.1 Necessary conditions -- 5.1.3.2 Sufficient condition -- 5.2 Classical methods for inequality constrained optimization -- 5.3 Random search method -- 5.4 Complex method -- 5.4.1 Iterative procedure -- 5.5 Sequential linear programming -- 5.6 Zoutendijk's method of feasible directions 
504 |a Includes bibliographical references and index. 
650 0 |a Mathematical optimization. 
650 0 |a Computer algorithms. 
650 0 |a Algorithms. 
650 2 |a Algorithms  |0 (DNLM)D000465 
650 6 |a Algorithmes.  |0 (CaQQLa)201-0001230 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 7 |a algorithms.  |2 aat  |0 (CStmoGRI)aat300065585 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Computer algorithms  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Mathematical optimization  |2 fast  |0 (OCoLC)fst01012099 
655 7 |a e-books.  |2 aat  |0 (CStmoGRI)aatgf300265554 
655 7 |a Livres num�eriques.  |2 rvmgf  |0 (CaQQLa)RVMGF-000000267 
776 0 8 |i Print version:  |z 0128211261  |z 9780128211267  |w (OCoLC)1138576761 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128211267  |z Texto completo