|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1191246782 |
003 |
OCoLC |
005 |
20231120010507.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200831s2020 enka o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d UKAHL
|d UKMGB
|d OCLCO
|d OCLCF
|d EBLCP
|d N$T
|d KUK
|d CNMON
|d OCLCO
|d OPELS
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCL
|d OCLCQ
|
015 |
|
|
|a GBC0B7168
|2 bnb
|
016 |
7 |
|
|a 019886982
|2 Uk
|
019 |
|
|
|a 1193129070
|a 1196197823
|a 1380935423
|
020 |
|
|
|a 9780128224922
|q (electronic bk.)
|
020 |
|
|
|a 0128224924
|q (electronic bk.)
|
020 |
|
|
|z 9780128211267
|
020 |
|
|
|z 0128211261
|
035 |
|
|
|a (OCoLC)1191246782
|z (OCoLC)1193129070
|z (OCoLC)1196197823
|z (OCoLC)1380935423
|
050 |
|
4 |
|a QA402.5
|
082 |
0 |
4 |
|a 519.6
|2 23
|
100 |
1 |
|
|a Nayak, Sukanta,
|e author.
|
245 |
1 |
0 |
|a Fundamentals of optimization techniques with algorithms /
|c Sukanta Nayak.
|
264 |
|
1 |
|a London, United Kingdom ;
|a San Diego, CA, United States :
|b Academic Press is an imprint of Elsevier,
|c [2020]
|
300 |
|
|
|a 1 online resource (xv, 305 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Front Cover -- Fundamentals of Optimization Techniques With Algorithms -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- 1. Introduction to optimization -- 1.1 Optimal problem formulation -- 1.1.1 Design variables -- 1.1.2 Constraints -- 1.1.3 Objective function -- 1.1.4 Variable bounds -- 1.2 Engineering applications of optimization -- 1.3 Optimization techniques -- Further reading -- 2. Linear programming -- 2.1 Formulation of the problem -- Practice set 2.1 -- 2.2 Graphical method -- 2.2.1 Working procedure -- Practice set 2.2 -- 2.3 General LPP
|
505 |
8 |
|
|a 2.3.1 Canonical and standard forms of LPP -- Practice set 2.3 -- 2.4 Simplex method -- 2.4.1 Reduction of feasible solution to a basic feasible solution -- 2.4.2 Working procedure of the simplex method -- Practice set 2.4 -- 2.5 Artificial variable techniques -- 2.5.1 Big M method -- 2.5.2 Two-phase method -- Practice set 2.5 -- 2.6 Duality Principle -- 2.6.1 Formulation of a dual problem -- 2.6.1.1 Formulation of a dual problem when the primal has equality constraints -- 2.6.1.2 Duality principle -- Practice set 2.6 -- 2.7 Dual simplex method -- 2.7.1 Working procedure for a dual simplex method
|
505 |
8 |
|
|a Practice set 2.7 -- Further reading -- 3. Single-variable nonlinear optimization -- 3.1 Classical method for single-variable optimization -- 3.2 Exhaustive search method -- 3.3 Bounding phase method -- 3.4 Interval halving method -- 3.5 Fibonacci search method -- 3.6 Golden section search method -- 3.7 Bisection method -- 3.8 Newton-Raphson method -- 3.9 Secant method -- 3.10 Successive quadratic point estimation method -- Further reading -- 4. Multivariable unconstrained nonlinear optimization -- 4.1 Classical method for multivariable optimization
|
505 |
8 |
|
|a 4.1.1 Definition: rth differential of a function f(X) -- 4.1.2 Necessary condition -- 4.1.3 Sufficient condition -- 4.2 Unidirectional search method -- 4.3 Evolutionary search method -- 4.3.1 Box's evolutionary optimization method -- 4.4 Simplex search method -- 4.5 Hooke-Jeeves pattern search method -- 4.5.1 Exploratory move -- 4.5.2 Pattern move -- 4.6 Conjugate direction method -- 4.6.1 Parallel subspace property -- 4.6.2 Extended parallel subspace property -- 4.7 Steepest descent method -- 4.7.1 Cauchy's (steepest descent) method -- 4.8 Newton's method -- 4.9 Marquardt's method
|
505 |
8 |
|
|a Practice set -- Further reading -- 5. Multivariable constrained nonlinear optimization -- 5.1 Classical methods for equality constrained optimization -- 5.1.1 Solution by direct substitution -- 5.1.2 Solution by the method of constrained variation -- 5.1.3 Solution by the method of Lagrange multipliers -- 5.1.3.1 Necessary conditions -- 5.1.3.2 Sufficient condition -- 5.2 Classical methods for inequality constrained optimization -- 5.3 Random search method -- 5.4 Complex method -- 5.4.1 Iterative procedure -- 5.5 Sequential linear programming -- 5.6 Zoutendijk's method of feasible directions
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Computer algorithms.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
2 |
|a Algorithms
|0 (DNLM)D000465
|
650 |
|
6 |
|a Algorithmes.
|0 (CaQQLa)201-0001230
|
650 |
|
6 |
|a Optimisation math�ematique.
|0 (CaQQLa)201-0007680
|
650 |
|
7 |
|a algorithms.
|2 aat
|0 (CStmoGRI)aat300065585
|
650 |
|
7 |
|a Algorithms.
|2 fast
|0 (OCoLC)fst00805020
|
650 |
|
7 |
|a Computer algorithms
|2 fast
|0 (OCoLC)fst00872010
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|0 (OCoLC)fst01012099
|
655 |
|
7 |
|a e-books.
|2 aat
|0 (CStmoGRI)aatgf300265554
|
655 |
|
7 |
|a Livres num�eriques.
|2 rvmgf
|0 (CaQQLa)RVMGF-000000267
|
776 |
0 |
8 |
|i Print version:
|z 0128211261
|z 9780128211267
|w (OCoLC)1138576761
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128211267
|z Texto completo
|