Nanomaterials for theranostics and tissue engineering : techniques, trends and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2020.
|
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Nanomaterials for Theranostics and Tissue Engineering
- Copyright Page
- Contents
- List of contributors
- Introduction
- 1 Polymeric nanoparticles for controlled drug delivery
- 1.1 General concepts and synthetic strategies
- 1.2 Polymer nanoparticles for controlled drug delivery
- 1.2.1 Stimuli-responsive polymer nanoparticles
- 1.3 The long road from the bench to the clinic
- 1.4 Conclusions
- References
- 2 Extracellular vesicles in regenerative medicine
- 2.1 Introduction
- 2.2 Cell-based therapies
- 2.3 Tissue engineering
- 2.4 Cell-free therapies
- 2.4.1 Soluble factors
- 2.4.2 Biogenic and synthetic nanoparticles
- 2.5 Extracellular vesicles in a nutshell
- 2.5.1 Extracellular vesicle biological and physicochemical properties
- 2.5.2 Extracellular vesicle separation and characterization
- 2.5.3 Medical translation of extracellular vesicles
- 2.6 Regenerative properties of extracellular vesicles
- 2.6.1 Why extracellular vesicles?
- 2.6.2 Preclinical studies
- 2.6.3 Clinical studies
- 2.6.4 Limits of extracellular vesicle applications in clinical treatments
- 2.7 Conclusions
- Acknowledgments
- References
- 3 Novel strategies to improve delivery performances
- 3.1 Introduction
- 3.2 Functionalization strategies: the rationale
- 3.2.1 Chemical routes
- 3.2.1.1 Esterification and modification of active ester
- 3.2.1.2 Click chemistry
- 3.2.1.3 Other chemical cross-linking strategies
- 3.2.2 Physical routes
- 3.3 Applications in tissue engineering
- 3.3.1 The cell membranes barrier
- 3.3.2 The tumor environment
- 3.3.3 The blood-brain barrier
- 3.4 Applications in theranostics
- 3.5 Conclusions
- References
- 4 HR-MAS NMR Spectroscopy: novel technologies to measure delivery performance
- 4.1 Introduction
- 4.2 High-resolution magic angle spinning nuclear magnetic resonance
- 4.2.1 Theory
- 4.2.2 Experimental setup
- 4.2.3 Example HR-MAS resolution enhancement in hydrogel polymers and swollen polymers
- 4.3 Pulse field gradient HR-MAS nuclear magnetic resonance spectroscopy
- 4.3.1 Translational motion in isotropic systems
- 4.3.2 Restricted and anisotropic motion
- 4.4 Applications in drug delivery
- 4.4.1 Cyclodextrin nanosponges polymers
- 4.4.2 Agarose-carbomer copolymers hydrogels
- 4.5 Final remarks
- References
- 5 The role of first principles mathematical modeling in the nanomedicine field
- 5.1 The new challenges introduced by nanomedicine
- 5.2 Modeling approaches
- 5.2.1 An introduction to molecular modeling
- 5.2.2 Molecular dynamics
- 5.2.3 Coarse-grained simulations
- 5.2.4 Enhanced sampling methods
- 5.2.5 Macroscale models
- 5.3 Applications of mathematical modeling in the nanomedicine field
- 5.3.1 Biomolecular corona
- 5.3.2 Targeting and cellular uptake
- 5.3.3 Nanoparticle distribution and drug delivery
- 5.4 Conclusions
- References