|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1190852496 |
003 |
OCoLC |
005 |
20231120010507.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200828s2020 ne o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d EBLCP
|d UKAHL
|d UKMGB
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d N$T
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC087817
|2 bnb
|
016 |
7 |
|
|a 019848836
|2 Uk
|
020 |
|
|
|a 9780128181294
|q (electronic bk.)
|
020 |
|
|
|a 012818129X
|q (electronic bk.)
|
020 |
|
|
|z 0128181281
|
020 |
|
|
|z 9780128181287
|
035 |
|
|
|a (OCoLC)1190852496
|
050 |
|
4 |
|a R857.M3
|
082 |
0 |
4 |
|a 610.28
|2 23
|
245 |
0 |
0 |
|a Biomaterials for 3D tumor modeling /
|c edited by Subhas C. Kundu and Rui L. Reis.
|
260 |
|
|
|a Amsterdam, Netherlands :
|b Elsevier,
|c 2020.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
336 |
|
|
|a still image
|b sti
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Materials today
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Front Cover -- Biomaterials for 3D Tumor Modeling -- Copyright Page -- Contents -- List of Contributors -- Preface -- I. Engineering biomaterials for 3D cancer modelling -- 1 Trends in biomaterials for three-dimensional cancer modeling -- Abbreviations -- 1.1 A historical introduction -- 1.1.1 In vitro and in vivo models: an overview -- 1.1.2 A paradigm shift -- 1.1.3 Three-dimensional biomaterials for cancer modeling -- 1.1.4 From the lab to the clinic -- 1.2 The three-dimensional tumor microenvironment -- 1.2.1 The tumor and its three-dimensional environment: a synergistic interaction
|
505 |
8 |
|
|a 1.2.2 Biomaterials as a model of the tumor niche -- 1.2.2.1 Scaffold-based biomaterials -- 1.2.2.2 Matrix-based -- 1.2.2.3 Microcarrier-based -- 1.2.2.4 Scaffold-free: tumor spheroids -- 1.2.2.5 Microstructured surfaces -- 1.3 Engineering the native tumor microenvironment using custom-designed three-dimensional biomaterials -- 1.3.1 Tissue engineering approaches -- 1.3.1.1 Freeze-drying -- 1.3.1.2 Photopolymerization -- 1.3.1.3 Three-dimensional bioprinting -- 1.3.2 Nanotechnology approaches -- 1.3.2.1 Molding -- 1.3.2.2 Printing -- 1.3.2.2.1 (Two-dimensional) microcontact printing
|
505 |
8 |
|
|a 1.3.2.2.2 Three-dimensional printing -- 1.3.2.2.3 Four-dimensional printing -- 1.4 Advanced models of the three-dimensional tumor microenvironment -- 1.4.1 Microfluidics-based models -- 1.4.1.1 Microfluidic-based models of tumors: tumor-on-a-chip -- 1.4.1.2 Drug discovery and screening on-chip -- 1.4.1.3 Reproducing dynamic events on-chip -- 1.4.1.4 Personalized tumor-on-a-chip models -- 1.4.1.5 Manufacturing methods of a tumor-on-a-chip -- 1.4.2 Three-dimensional bioprinted models -- 1.5 Applications of three-dimensional tumor models in cancer therapeutics
|
505 |
8 |
|
|a 1.5.1 Drug discovery, development, and screening -- 1.5.2 Transport and delivery of drugs -- 1.6 Limitations of biomaterials-based three-dimensional tumor models -- 1.7 Future of three-dimensional biomaterials for cancer research -- 1.8 Final remarks and conclusions -- References -- 2 Bioinspired biomaterials to develop cell-rich spherical microtissues for 3D in vitro tumor modeling -- 2.1 Introduction -- 2.2 Human Tumor microenvironment-key hallmarks to mimic in vitro -- 2.3 3D In vitro tumor models-bridging the gap from 2D flat cultures to in vivo -- 2.4 Classes of 3D multicellular tumor models
|
505 |
8 |
|
|a 2.4.1 Scaffold-free cell-rich 3D multicellular tumor spheroids -- 2.4.2 Scaffold-based 3D multicellular tumor models -- 2.4.2.1 Biomaterials for establishing physiomimetic 3D tumor microenvironments -- 2.4.2.1.1 Natural and nature-derived biomaterials for 3D tumor modeling -- Protein-based biomaterials -- Polysaccharide-based biomaterials -- 2.4.2.1.2 Synthetic biomaterials for 3D tumor modeling -- 2.4.2.1.3 Hybrid biomaterials for 3D tumor modeling -- 2.4.3 Generation of spherically structured cell-rich 3D tumor models -- 2.4.3.1 Microparticles for spherically structured 3D tumor models assembly
|
650 |
|
0 |
|a Biomedical materials.
|
650 |
|
0 |
|a Three-dimensional imaging in medicine.
|
650 |
|
0 |
|a Tumors
|x Computer simulation.
|
650 |
|
2 |
|a Biomedical and Dental Materials
|0 (DNLM)D001697
|
650 |
|
2 |
|a Biocompatible Materials
|0 (DNLM)D001672
|
650 |
|
2 |
|a Imaging, Three-Dimensional
|0 (DNLM)D021621
|
650 |
|
6 |
|a Biomat�eriaux.
|0 (CaQQLa)201-0025723
|
650 |
|
6 |
|a Imagerie tridimensionnelle en m�edecine.
|0 (CaQQLa)201-0210978
|
650 |
|
6 |
|a Tumeurs
|0 (CaQQLa)201-0079779
|x Simulation par ordinateur.
|0 (CaQQLa)201-0379159
|
650 |
|
7 |
|a Biomedical materials
|2 fast
|0 (OCoLC)fst00832586
|
650 |
|
7 |
|a Three-dimensional imaging in medicine
|2 fast
|0 (OCoLC)fst01150334
|
700 |
1 |
|
|a Kundu, S. C.
|q (Subhas Chandra)
|
700 |
1 |
|
|a Reis, Rui L.
|
776 |
0 |
8 |
|i Print version:
|t Biomaterials for 3D tumor modeling.
|d Amsterdam, Netherlands : Elsevier, 2020
|z 0128181281
|z 9780128181287
|w (OCoLC)1135667774
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128181287
|z Texto completo
|