Cargando…

Fundamentals of heat and fluid flow in high temperature fuel cells /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ghassemi, Majid, 1960-
Otros Autores: Kamvar, Majid, Steinberger-Wilckens, Robert
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Fundamentals of Heat and Fluid Flow in High Temperature Fuel Cells
  • Copyright Page
  • Dedication
  • Contents
  • About the authors
  • Preface
  • Acknowledgments
  • 1 Introduction to fuel cells
  • 1.1 What is a fuel cell?
  • 1.2 How does a fuel cell work?
  • 1.3 Types of fuel cells
  • 1.3.1 Hydroxide ion exchange fuel cell
  • 1.3.2 Oxide ion exchange fuel cell
  • 1.3.3 Proton exchange fuel cell
  • 1.3.4 Carbonate ion exchange fuel cell
  • 1.4 Thermodynamics of fuel cells
  • References
  • 2 Classification of solid oxide fuel cells
  • 2.1 Historical summary
  • 2.2 Geometrical types
  • 2.2.1 Planar design
  • 2.2.2 Tubular design
  • 2.2.3 High-power density design
  • 2.2.4 Delta design
  • 2.2.5 Button design
  • 2.3 Cell types in terms of its support
  • 2.3.1 Electrolyte-supported solid oxide fuel cell
  • 2.3.2 Cathode-supported solid oxide fuel cell
  • 2.3.3 Anode-supported solid oxide fuel cell
  • 2.4 Solid oxide fuel cell classification based on flow patterns
  • 2.5 Cell types in terms of its chamber number
  • 2.5.1 Dual-chamber solid oxide fuel cell
  • 2.5.2 Single-chamber solid oxide fuel cell
  • 2.5.3 No-chamber solid oxide fuel cell
  • 2.6 Single and stack cell designs
  • References
  • 3 Solid oxide fuel cells in hybrid systems
  • 3.1 Strategies for improving the efficiency of solid oxide fuel cell power generation systems
  • 3.2 Thermodynamic cycle options in hybrid solid oxide fuel cell systems
  • 3.3 Balance of plant equipment
  • 3.3.1 Fuel desulfurization
  • 3.3.2 Heat exchangers
  • 3.3.3 Ejectors
  • 3.3.4 Reformer
  • 3.3.5 Afterburners
  • 3.3.6 Power electronics
  • 3.3.7 Other components
  • 3.4 Basic solid oxide fuel cell/gas turbine hybrid cycle
  • 3.5 Different configurations of solid oxide fuel cell hybrid systems
  • 3.5.1 Direct thermal coupling scheme
  • 3.5.2 Indirect thermal coupling scheme
  • 3.5.3 Other types of coupling
  • 3.6 Mathematical modeling of an solid oxide fuel cell/gas turbine hybrid system
  • References
  • 4 Fundamentals of electrochemistry
  • 4.1 The basic concepts of gas mixture category
  • 4.1.1 Mass fractions and mole fractions
  • 4.1.2 Ideal gas mixtures
  • 4.1.3 Properties of gas mixtures
  • 4.2 Conservation of species
  • 4.3 Species source terms in solid oxide fuel cells
  • 4.3.1 Chemical reactions
  • 4.3.2 Electrochemical reactions
  • 4.3.2.1 Electrochemical reaction rate
  • 4.3.3 Some applicable boundary conditions for solid oxide fuel cells
  • 4.3.3.1 Inflow boundary conditions
  • 4.3.3.2 Outflow boundary condition
  • 4.3.3.3 Insulation boundary conditions
  • 4.3.3.4 Electrical potential boundary condition
  • 4.3.3.5 Axial symmetry boundary condition
  • 4.3.3.6 Continuity boundary condition
  • References
  • Further reading
  • 5 Fundamental of heat transfer
  • 5.1 Different modes of heat transfer
  • 5.1.1 Conduction heat transfer
  • 5.1.2 Convection heat transfer
  • 5.1.3 Radiation heat transfer
  • 5.1.3.1 Schuster-Schwartzchild two-flux approximation