Cargando…

Comprehensive nuclear materials /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Konings, R. J. M., 1961-, Stoller, R. E. (Roger E.), 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2020.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • E9780081028650v1_WEB
  • Cover
  • COMPREHENSIVE NUCLEAR MATERIALS
  • EDITORIAL BOARD
  • LIST OF CONTRIBUTORS TO VOLUME 1
  • PREFACE TO THE SECOND EDITION
  • CONTENT OF ALL VOLUMES
  • Fundamental Properties of Defects in Metals
  • 1.01.1 Introduction
  • 1.01.2 The Displacement Energy
  • 1.01.3 Properties of Vacancies
  • 1.01.3.1 Vacancy Formation
  • 1.01.3.2 Vacancy Migration
  • 1.01.3.3 Activation Volume for Self-Diffusion
  • 1.01.4 Properties of Self-Interstitials
  • 1.01.4.1 Atomic Structure of Self-Interstitials
  • 1.01.4.2 Formation Energy of Self-Interstitials
  • 1.01.4.3 Relaxation Volume of Self-Interstitials
  • 1.01.4.4 Self-Interstitial Migration
  • 1.01.5 Interaction of Point Defects With Other Strain Fields
  • 1.01.5.1 The Misfit or Size Interaction
  • 1.01.5.2 The Diaelastic or Modulus Interaction
  • 1.01.5.3 The Image Interaction
  • 1.01.6 Anisotropic Diffusion in Strained Crystals of Cubic Symmetry
  • 1.01.6.1 Transition From Atomic to Continuum Diffusion
  • 1.01.6.2 Stress-Induced Anisotropic Diffusion in fcc Metals
  • 1.01.6.3 Diffusion in Nonuniform Stress Fields
  • 1.01.7 Local Thermodynamic Equilibrium at Sinks
  • 1.01.7.1 Introduction
  • 1.01.7.2 Edge Dislocations
  • 1.01.7.3 Dislocation Loops
  • 1.01.7.4 Voids and Bubbles
  • 1.01.7.4.1 Capillary approximation
  • 1.01.7.4.2 The mechanical concept of surface stress
  • 1.01.7.4.3 Surface stresses and bulk stresses for spherical cavities
  • 1.01.7.4.4 Chemical potential of vacancies at cavities
  • 1.01.8 Sink Strengths and Biases
  • 1.01.8.1 Effective Medium Approach
  • 1.01.8.2 Dislocation Sink Strength and Bias
  • 1.01.8.2.1 The solution of Ham
  • 1.01.8.2.2 Dislocation bias with size and modulus interactions
  • 1.01.8.3 Bias of Voids and Bubbles
  • 1.01.9 Conclusions and Outlook
  • Appendix 1.01.A Elasticity Models: Defects at the Center of a Spherical Body
  • 1.01.A1 An Effective Medium Approximation
  • 1.01.A2 The Isotropic, Elastic Sphere With a Defect at its Center
  • Appendix 1.01.B Representation of Defects by Atomic Forces and by Multipole Tensors
  • 1.01.B1 Kanzaki Forces
  • 1.01.B2 Volume Change From Kanzaki Forces
  • 1.01.B3 Connection of Kanzaki Forces With Transformation Strains
  • 1.01.B4 Multipole Tensors for a Spherical Inclusion
  • 1.01.B5 Multipole Tensors for a Plate-Like Inclusion
  • See also
  • References
  • Fundamental Point Defect Properties in Ceramics
  • 1.02.1 Introduction
  • 1.02.2 Intrinsic Point Defects in Ionic Materials
  • 1.02.2.1 Point Defects Compared to Defects of Greater Spatial Extent
  • 1.02.2.2 Kr�oger Vink Notation
  • 1.02.2.3 Charge of Point Defects
  • 1.02.2.4 Intrinsic Disorder Reactions
  • 1.02.2.5 Concentration of Intrinsic Defects
  • 1.02.3 Defect Reactions
  • 1.02.3.1 Intrinsic Defects
  • 1.02.3.2 Effect of Doping on Defect Concentrations
  • 1.02.3.3 Decrease of Intrinsic Defect Concentration Through Doping
  • 1.02.3.4 Defect Associations
  • 1.02.3.5 Non-Stoichiometry