Comprehensive nuclear materials /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2020.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- E9780081028650v1_WEB
- Cover
- COMPREHENSIVE NUCLEAR MATERIALS
- EDITORIAL BOARD
- LIST OF CONTRIBUTORS TO VOLUME 1
- PREFACE TO THE SECOND EDITION
- CONTENT OF ALL VOLUMES
- Fundamental Properties of Defects in Metals
- 1.01.1 Introduction
- 1.01.2 The Displacement Energy
- 1.01.3 Properties of Vacancies
- 1.01.3.1 Vacancy Formation
- 1.01.3.2 Vacancy Migration
- 1.01.3.3 Activation Volume for Self-Diffusion
- 1.01.4 Properties of Self-Interstitials
- 1.01.4.1 Atomic Structure of Self-Interstitials
- 1.01.4.2 Formation Energy of Self-Interstitials
- 1.01.4.3 Relaxation Volume of Self-Interstitials
- 1.01.4.4 Self-Interstitial Migration
- 1.01.5 Interaction of Point Defects With Other Strain Fields
- 1.01.5.1 The Misfit or Size Interaction
- 1.01.5.2 The Diaelastic or Modulus Interaction
- 1.01.5.3 The Image Interaction
- 1.01.6 Anisotropic Diffusion in Strained Crystals of Cubic Symmetry
- 1.01.6.1 Transition From Atomic to Continuum Diffusion
- 1.01.6.2 Stress-Induced Anisotropic Diffusion in fcc Metals
- 1.01.6.3 Diffusion in Nonuniform Stress Fields
- 1.01.7 Local Thermodynamic Equilibrium at Sinks
- 1.01.7.1 Introduction
- 1.01.7.2 Edge Dislocations
- 1.01.7.3 Dislocation Loops
- 1.01.7.4 Voids and Bubbles
- 1.01.7.4.1 Capillary approximation
- 1.01.7.4.2 The mechanical concept of surface stress
- 1.01.7.4.3 Surface stresses and bulk stresses for spherical cavities
- 1.01.7.4.4 Chemical potential of vacancies at cavities
- 1.01.8 Sink Strengths and Biases
- 1.01.8.1 Effective Medium Approach
- 1.01.8.2 Dislocation Sink Strength and Bias
- 1.01.8.2.1 The solution of Ham
- 1.01.8.2.2 Dislocation bias with size and modulus interactions
- 1.01.8.3 Bias of Voids and Bubbles
- 1.01.9 Conclusions and Outlook
- Appendix 1.01.A Elasticity Models: Defects at the Center of a Spherical Body
- 1.01.A1 An Effective Medium Approximation
- 1.01.A2 The Isotropic, Elastic Sphere With a Defect at its Center
- Appendix 1.01.B Representation of Defects by Atomic Forces and by Multipole Tensors
- 1.01.B1 Kanzaki Forces
- 1.01.B2 Volume Change From Kanzaki Forces
- 1.01.B3 Connection of Kanzaki Forces With Transformation Strains
- 1.01.B4 Multipole Tensors for a Spherical Inclusion
- 1.01.B5 Multipole Tensors for a Plate-Like Inclusion
- See also
- References
- Fundamental Point Defect Properties in Ceramics
- 1.02.1 Introduction
- 1.02.2 Intrinsic Point Defects in Ionic Materials
- 1.02.2.1 Point Defects Compared to Defects of Greater Spatial Extent
- 1.02.2.2 Kr�oger Vink Notation
- 1.02.2.3 Charge of Point Defects
- 1.02.2.4 Intrinsic Disorder Reactions
- 1.02.2.5 Concentration of Intrinsic Defects
- 1.02.3 Defect Reactions
- 1.02.3.1 Intrinsic Defects
- 1.02.3.2 Effect of Doping on Defect Concentrations
- 1.02.3.3 Decrease of Intrinsic Defect Concentration Through Doping
- 1.02.3.4 Defect Associations
- 1.02.3.5 Non-Stoichiometry