Nano-optics : fundamentals, experimental methods, and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2020.
|
Colección: | Micro and Nano Technologies Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Nano-Optics: Fundamentals, Experimental Methods, and Applications
- Copyright
- Contents
- Contributors
- About the Editors
- Chapter 1: From nature: Optics, nanotechnology, and nano-optics
- 1. Introduction
- 2. Nature and optics
- 3. Nanotechnology in nature
- 4. Presence of nano-optics in nature
- 4.1. Light manipulation
- 4.2. Antireflection
- 4.3. Light focusing
- 4.4. Chirality
- 5. Summary
- References
- Chapter 2: Nano-optics: Challenges, trends, and future
- 1. An outlook
- 1.1. A historical perspective
- 1.2. Photonics
- 1.3. Speed of light
- 1.4. Focal length of thin spherical lens and refractive index
- 1.5. Brewster's angle
- 1.6. Optical properties of nanoparticles
- 2. Challenges: Nano-optics bottleneck
- 3. Trends: Current scenario in nano-optics
- 4. The future: A world of possibilities
- 5. Conclusion
- References
- Chapter 3: Nano-optics for healthcare applications
- 1. Introduction
- 2. Nano-optics for bio imaging
- 3. Nano-optics for biosensing
- 4. Nano-optics for cancer therapy
- 5. Conclusion
- References
- Chapter 4: Laser, nanoparticles, and optics
- 1. Laser-Introduction
- 1.1. Laser principle and properties
- 1.2. Applications of laser in nanotechnology
- 1.3. Applications of nanotechnology in laser devices
- 1.4. Laser-produced nanoparticles
- 1.4.1. Synthesis approach
- 2. Random lasing
- 2.1. Coherent and incoherent random lasers
- 2.2. Fabrication of the random media: Importance of nanostructured materials
- 2.3. Plasmonically enhanced random laser to spaser
- 2.4. Directionality in random lasers
- 3. Applications of random lasers
- References
- Chapter 5: Introduction to quantum plasmonic sensing
- 1. Introduction
- 2. Plasmonic sensing
- 2.1. Surface plasmon resonance sensing
- Spectral interrogation
- 2.2. Localized surface plasmon resonance sensing
- 2.3. Other plasmonic sensors
- 2.4. Intensity- and phase-sensitive sensing
- 3. Quantum sensing
- 3.1. Shot-noise limit
- 3.2. Subshot-noise sensing
- 3.3. Single-mode schemes
- 3.4. Two-mode schemes
- 4. Quantum plasmonic sensing
- 4.1. Quantum sensing with metallic nanoparticles
- 4.1.1. Refractive index sensing with two-mode squeezed vacuum states
- 4.1.2. Ultrasound sensing with two-mode squeezed displaced states
- 4.2. Quantum sensing with metallic film-prism setups
- 4.2.1. Refractive index sensing with two-mode squeezed displaced states
- Comparison among different state inputs
- 4.2.2. Refractive index sensing with photon number states
- 4.3. Quantum sensing with metallic nanowires
- 5. Conclusion
- References
- Chapter 6: Nanobiophotonics and fluorescence nanoscopy in 2020
- 1. Introduction
- 1.1. Electrons, photons, and plasmons
- 1.2. Nanoparticles
- 2. Optical microscopy to nanoscopy
- 2.1. Optical resolution: A historical perspective
- 2.2. Optical nanoscopy