Big data in astronomy : scientific data processing for advanced radio telescopes /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2020]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Big Data in Astronomy: Scientific Data Processing for Advanced Radio Telescopes
- Copyright
- Contents
- Contributors
- Preface
- Acknowledgments
- Part A: Fundamentals
- Chapter 1: Introduction to radio astronomy
- 1. The history of astronomy
- 1.1. Ancient astronomy
- 1.2. Astronomy from the mid-16th century to the mid-19th century
- 1.3. Astronomy since the mid-19th century
- 2. What is radio astronomy
- 2.1. How does radio astronomy occur
- 2.2. The radio stars, quasars, and black holes
- 2.2.1. The strongest radio source, Cygnus A, in the sky
- 2.2.2. The discovery of cliff allergens and radio galaxies
- 2.2.3. Nonthermal radiation
- 2.2.4. Synchronous radiation
- 2.2.5. Synchrotron radiation pattern
- 2.2.6. Connect nonthermal radiation and cosmic rays
- 2.2.7. Astrophysics of cosmic rays
- 2.2.8. Discovery of quasars
- 2.3. The radio astronomy instrument: Radio telescope
- 2.4. Some achievements of radio astronomy
- 2.5. Astronomical research nowadays
- 3. Advanced radio telescope
- 3.1. The square kilometer array (SKA)
- 3.2. Fast
- 4. The challenge of radio astronomy
- 4.1. System noise
- 4.2. Antennas and collecting area
- 4.3. Data transmission
- 5. The development tendency of radio astronomy
- 5.1. Mid-frequency aperture arrays
- 5.2. Entering a near future
- References
- Chapter 2: Fundamentals of big data in radio astronomy
- 1. Big data and astronomy
- 1.1. Background of big data
- 1.2. Definitions and features of big data
- 1.3. Development of big data
- 1.4. Big data in astronomy
- 1.5. Statistical challenges in astronomy
- 2. Increasing data volumes of telescopes
- 2.1. Sloan digital sky survey
- 2.2. Visible and infrared survey telescope for astronomy
- 2.3. Large synoptic survey telescope
- 2.4. Thirty meter telescope
- 3. Existing methods for the value chain of big data
- 3.1. Data generation
- 3.2. Data acquisition
- 3.3. Data storage
- 3.4. Data analysis
- 3.4.1. Traditional data analysis methods
- 3.4.2. Big data analytic methods
- 3.4.3. Architecture for big data analysis
- 4. Current statistical methods for astronomical data analysis
- 4.1. Nonparametric statistics
- 4.2. Data smoothing
- 4.3. Multivariate clustering and classification
- 4.4. Nondetections and truncation
- 4.5. Spatial point processes
- 5. Platforms for big data processing
- 5.1. Horizontal scaling platforms
- 5.2. Vertical scaling platforms
- 5.2.1. High performance computing (HPC) clusters
- 5.2.2. Multicore CPU
- 5.2.3. Graphics processing unit (GPU)
- 5.2.4. Field programmable gate arrays (FPGA)
- References
- Part B: Big data processing
- Chapter 3: Preprocessing pipeline on FPGA
- 1. FPGA interface for ADC
- 1.1. ADC interleaving
- 1.2. Bit alignment
- 1.3. Stream deserialization
- 2. FIR filtering
- 2.1. Leakage
- 2.2. Scalloping loss
- 2.3. Polyphase filter
- 3. Time-frequency domain transposing
- 3.1. Real-valued FFT.