Barkhausen noise for nondestructive testing and materials characterization in low-carbon steels /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Duxford :
Woodhead Publishing,
2020.
|
Colección: | Woodhead Publishing series in electronic and optical materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title page
- Table of Contents
- Copyright
- Contributors
- Preface
- Acknowledgment
- 1: Introduction
- Abstract
- 1.1 Brief history of Barkhausen noise
- 1.2 Physical foundations of Barkhausen noise
- 1.3 Spatial distribution and detection of BN
- 1.4 Relationship between Barkhausen noise and hysteresis
- 1.5 Stochastic vs. deterministic nature of Barkhausen noise
- 1.6 Applications
- 2: Measurement methods
- Abstract
- 2.1 Historical overview
- 2.2 Sample magnetization
- 2.3 Barkhausen noise detection
- 2.4 Signal processing
- 2.5 Measurement repeatability
- 3: Quantitative characterization of Barkhausen noise
- Abstract
- 3.1 Introduction
- 3.2 Magnitudes that characterize the BN signal
- 3.3 BN jump parameters
- 3.4 Probabilistic neural networks (PNN)
- 3.5 Feature extraction
- 3.6 The general self-organizing maps (SOM) algorithm
- 3.7 Initialization method for the SOM using BN signals
- 3.8 Deep neural networks
- 3.9 Concluding remarks
- 4: Materials
- Abstract
- 4.1 Introduction
- 4.2 Microstructural characteristics of low-carbon steels
- 4.3 Methods for the investigation of low-carbon steels
- 5: Barkhausen noise for material characterization
- Abstract
- 5.1 Introduction
- 5.2 Advantages and disadvantages of BN for material characterization
- 5.3 Dependence of BN on grain size
- 5.4 Influence of the carbon content on BN
- 5.5 Influence of applied tensile stress on BN
- 5.6 Influence of the uniaxial applied tensile stress on the BN signal
- 5.7 Influence of applied tensile stress on the angular dependence of BN
- 5.8 Influence of the uniaxial plastic deformation on the BN
- 5.9 Influence of simultaneous variation microstructural parameters on BN
- 5.10 Dependence of BN on plastic deformation and carbon content
- 5.11 Concluding remarks
- 6: Correlation between Barkhausen noise and magnetocrystalline anisotropy energy
- Abstract
- Acknowledgments
- 6.1 Introduction
- 6.2 MAE in a crystal
- 6.3 Determination of MAE in polycrystalline materials
- 6.4 MAE from EBSD microtexture measurements
- 6.5 Estimation of MAE from Barkhausen noise measurements in APL 5L steels
- 6.6 Correlation between MAE and Barkhausen noise
- 6.7 Correlation between EBSD microtexture-derived MAE and Barkhausen noise measurements
- 7: Model for the correlation between Barkhausen noise and, microstructure, and physical properties
- Abstract
- 7.1 Introduction
- 7.2 Review of current models of Barkhausen noise
- 7.3 Modeling the BN time-dependent signal
- 7.4 Modeling the average MAE from Barkhausen noise
- 7.5 Concluding remarks
- 8: Micromagnetic nondestructive testing Barkhausen noise vs other techniques
- Abstract
- 8.1 Introduction
- 8.2 Eddy current testing
- 8.3 Magnetic incremental permeability
- 8.4 Single and double needle probe method
- 8.5 Magnetic Barkhausen noise nondestructive testing method