Cargando…

Barkhausen noise for nondestructive testing and materials characterization in low-carbon steels /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Manh, Tu Le
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford : Woodhead Publishing, 2020.
Colección:Woodhead Publishing series in electronic and optical materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title page
  • Table of Contents
  • Copyright
  • Contributors
  • Preface
  • Acknowledgment
  • 1: Introduction
  • Abstract
  • 1.1 Brief history of Barkhausen noise
  • 1.2 Physical foundations of Barkhausen noise
  • 1.3 Spatial distribution and detection of BN
  • 1.4 Relationship between Barkhausen noise and hysteresis
  • 1.5 Stochastic vs. deterministic nature of Barkhausen noise
  • 1.6 Applications
  • 2: Measurement methods
  • Abstract
  • 2.1 Historical overview
  • 2.2 Sample magnetization
  • 2.3 Barkhausen noise detection
  • 2.4 Signal processing
  • 2.5 Measurement repeatability
  • 3: Quantitative characterization of Barkhausen noise
  • Abstract
  • 3.1 Introduction
  • 3.2 Magnitudes that characterize the BN signal
  • 3.3 BN jump parameters
  • 3.4 Probabilistic neural networks (PNN)
  • 3.5 Feature extraction
  • 3.6 The general self-organizing maps (SOM) algorithm
  • 3.7 Initialization method for the SOM using BN signals
  • 3.8 Deep neural networks
  • 3.9 Concluding remarks
  • 4: Materials
  • Abstract
  • 4.1 Introduction
  • 4.2 Microstructural characteristics of low-carbon steels
  • 4.3 Methods for the investigation of low-carbon steels
  • 5: Barkhausen noise for material characterization
  • Abstract
  • 5.1 Introduction
  • 5.2 Advantages and disadvantages of BN for material characterization
  • 5.3 Dependence of BN on grain size
  • 5.4 Influence of the carbon content on BN
  • 5.5 Influence of applied tensile stress on BN
  • 5.6 Influence of the uniaxial applied tensile stress on the BN signal
  • 5.7 Influence of applied tensile stress on the angular dependence of BN
  • 5.8 Influence of the uniaxial plastic deformation on the BN
  • 5.9 Influence of simultaneous variation microstructural parameters on BN
  • 5.10 Dependence of BN on plastic deformation and carbon content
  • 5.11 Concluding remarks
  • 6: Correlation between Barkhausen noise and magnetocrystalline anisotropy energy
  • Abstract
  • Acknowledgments
  • 6.1 Introduction
  • 6.2 MAE in a crystal
  • 6.3 Determination of MAE in polycrystalline materials
  • 6.4 MAE from EBSD microtexture measurements
  • 6.5 Estimation of MAE from Barkhausen noise measurements in APL 5L steels
  • 6.6 Correlation between MAE and Barkhausen noise
  • 6.7 Correlation between EBSD microtexture-derived MAE and Barkhausen noise measurements
  • 7: Model for the correlation between Barkhausen noise and, microstructure, and physical properties
  • Abstract
  • 7.1 Introduction
  • 7.2 Review of current models of Barkhausen noise
  • 7.3 Modeling the BN time-dependent signal
  • 7.4 Modeling the average MAE from Barkhausen noise
  • 7.5 Concluding remarks
  • 8: Micromagnetic nondestructive testing Barkhausen noise vs other techniques
  • Abstract
  • 8.1 Introduction
  • 8.2 Eddy current testing
  • 8.3 Magnetic incremental permeability
  • 8.4 Single and double needle probe method
  • 8.5 Magnetic Barkhausen noise nondestructive testing method