|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1158280315 |
003 |
OCoLC |
005 |
20231120010456.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200616s2020 enk o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d UKMGB
|d OCLCF
|d EBLCP
|d CUS
|d UKAHL
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|d N$T
|
015 |
|
|
|a GBC072152
|2 bnb
|
016 |
7 |
|
|a 019811035
|2 Uk
|
019 |
|
|
|a 1159168374
|
020 |
|
|
|a 9780081028780
|q (electronic bk.)
|
020 |
|
|
|a 0081028784
|q (electronic bk.)
|
020 |
|
|
|z 9780081028001
|
020 |
|
|
|z 0081028008
|
035 |
|
|
|a (OCoLC)1158280315
|z (OCoLC)1159168374
|
050 |
|
4 |
|a QC761
|
082 |
0 |
4 |
|a 538/.3
|2 23
|
245 |
0 |
0 |
|a Barkhausen noise for nondestructive testing and materials characterization in low-carbon steels /
|c edited by Tu Le Manh [and more].
|
260 |
|
|
|a Duxford :
|b Woodhead Publishing,
|c 2020.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Woodhead Publishing Series in Electronic and Optical Materials
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Intro -- Title page -- Table of Contents -- Copyright -- Contributors -- Preface -- Acknowledgment -- 1: Introduction -- Abstract -- 1.1 Brief history of Barkhausen noise -- 1.2 Physical foundations of Barkhausen noise -- 1.3 Spatial distribution and detection of BN -- 1.4 Relationship between Barkhausen noise and hysteresis -- 1.5 Stochastic vs. deterministic nature of Barkhausen noise -- 1.6 Applications -- 2: Measurement methods -- Abstract -- 2.1 Historical overview -- 2.2 Sample magnetization -- 2.3 Barkhausen noise detection -- 2.4 Signal processing -- 2.5 Measurement repeatability
|
505 |
8 |
|
|a 3: Quantitative characterization of Barkhausen noise -- Abstract -- 3.1 Introduction -- 3.2 Magnitudes that characterize the BN signal -- 3.3 BN jump parameters -- 3.4 Probabilistic neural networks (PNN) -- 3.5 Feature extraction -- 3.6 The general self-organizing maps (SOM) algorithm -- 3.7 Initialization method for the SOM using BN signals -- 3.8 Deep neural networks -- 3.9 Concluding remarks -- 4: Materials -- Abstract -- 4.1 Introduction -- 4.2 Microstructural characteristics of low-carbon steels -- 4.3 Methods for the investigation of low-carbon steels
|
505 |
8 |
|
|a 5: Barkhausen noise for material characterization -- Abstract -- 5.1 Introduction -- 5.2 Advantages and disadvantages of BN for material characterization -- 5.3 Dependence of BN on grain size -- 5.4 Influence of the carbon content on BN -- 5.5 Influence of applied tensile stress on BN -- 5.6 Influence of the uniaxial applied tensile stress on the BN signal -- 5.7 Influence of applied tensile stress on the angular dependence of BN -- 5.8 Influence of the uniaxial plastic deformation on the BN -- 5.9 Influence of simultaneous variation microstructural parameters on BN
|
505 |
8 |
|
|a 5.10 Dependence of BN on plastic deformation and carbon content -- 5.11 Concluding remarks -- 6: Correlation between Barkhausen noise and magnetocrystalline anisotropy energy -- Abstract -- Acknowledgments -- 6.1 Introduction -- 6.2 MAE in a crystal -- 6.3 Determination of MAE in polycrystalline materials -- 6.4 MAE from EBSD microtexture measurements -- 6.5 Estimation of MAE from Barkhausen noise measurements in APL 5L steels -- 6.6 Correlation between MAE and Barkhausen noise -- 6.7 Correlation between EBSD microtexture-derived MAE and Barkhausen noise measurements
|
505 |
8 |
|
|a 7: Model for the correlation between Barkhausen noise and, microstructure, and physical properties -- Abstract -- 7.1 Introduction -- 7.2 Review of current models of Barkhausen noise -- 7.3 Modeling the BN time-dependent signal -- 7.4 Modeling the average MAE from Barkhausen noise -- 7.5 Concluding remarks -- 8: Micromagnetic nondestructive testing Barkhausen noise vs other techniques -- Abstract -- 8.1 Introduction -- 8.2 Eddy current testing -- 8.3 Magnetic incremental permeability -- 8.4 Single and double needle probe method -- 8.5 Magnetic Barkhausen noise nondestructive testing method
|
650 |
|
0 |
|a Barkhausen effect.
|
650 |
|
0 |
|a Nondestructive testing.
|
650 |
|
6 |
|a Effet Barkhausen.
|0 (CaQQLa)201-0252684
|
650 |
|
6 |
|a Contr�ole non destructif.
|0 (CaQQLa)201-0017832
|
650 |
|
7 |
|a nondestructive testing.
|2 aat
|0 (CStmoGRI)aat300225748
|
650 |
|
7 |
|a Barkhausen effect
|2 fast
|0 (OCoLC)fst00827598
|
650 |
|
7 |
|a Nondestructive testing
|2 fast
|0 (OCoLC)fst01430903
|
700 |
1 |
|
|a Manh, Tu Le.
|
776 |
0 |
8 |
|i Print version:
|t Barkhausen noise for nondestructive testing and materials characterization in low-carbon steels.
|d Duxford : Woodhead Publishing, 2020
|z 0081028008
|z 9780081028001
|w (OCoLC)1127114597
|
830 |
|
0 |
|a Woodhead Publishing series in electronic and optical materials.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780081028001
|z Texto completo
|